Cho hàm số y = f x xác định trên ℝ thỏa mãn lim x → 3 f x − f 3 x − 3 = 2 . Kết quả đúng là:
A. f ' 3 = 2
B. f ' x = 2
C. f ' 2 = 3
D. f ' x = 3
Cho hàm số y = f(x) xác định trên ℝ , thỏa mãn f x > 0 , ∀ x ∈ ℝ và f’(x) + 2f(x) = 0. Tính f(-1), biết rằng f(1) = 1.
A. e - 2
B. e 3
C. e 4
D. 3
Chọn C.
Ta có f ' x + 2 f x = 0 ⇔ f ' x = - 2 f x ⇔ f ' x f x = - 2 d o f x > 0
Lấy tích phân hai vế, ta được
Cho hàm số y = f(x) xác định trên ℝ và có đạo hàm f '(x) thỏa mãn f ' x = 1 - x x + 2 . g x + 2018 trong đó g x < 0 , ∀ x ∈ ℝ . Hàm số y = f 1 - x + 2018 x + 2019 nghịch biến trên khoảng nào?
A. 1 ; + ∞
B. 0 ; 3
C. - ∞ ; 3
D. 3 ; + ∞
Đáp án D
Ta có y ' = f 1 - x + 2018 x + 2019 ' = 1 - x ' . f ' 1 - x + 2018 = - f ' 1 - x + 2018
= - x 3 - x . g 1 - x - 2018 + 2018 = - x 3 - x . g 1 - x mà g 1 - x < 0 ; ∀ x ∈ ℝ
Nên y ' < 0 ⇔ - x 3 - x . g 1 - x < 0 ⇔ x 3 - x . g 1 - x > 0 ⇔ x 3 - x < 0 ⇔ [ x > 3 x < 0
Khi đó, hàm số y = f 1 - x + 2018 x + 2019 nghịch biến trên khoảng 3 ; + ∞
Cho hàm số y = f (x) xác định và liên tục trên ℝ , thỏa mãn f x 5 + 4 x + 3 = 2 x + 1 với mọi x ∈ ℝ . Tích phân ∫ - 2 8 f x d x bằng:
A. 10.
B. 2.
C. 32 3
D. 72
Đáp án A
Ta có:
⇒ f x 5 + 4 x + 3 = 2 x + 1 ⇒ ∫ - 1 1 5 x 4 + 4 . f x 5 + 4 x + 3 d x = ∫ - 1 1 5 x 4 + 4 . ( 2 x + 1 ) d x ⇔ ∫ - 2 8 f ( t ) d t = ∫ - 1 1 ( 10 x 5 + 5 x 4 + 8 x + 4 ) d x
Cho hàm số y = f(x) xác định trên R và có đạo hàm y = f '(x) thỏa mãn f ' x = 1 − x x + 2 . g x + 2018 trong đó g x < 0 , ∀ x ∈ ℝ . Hàm số y = f 1 − x + 2018 x + 2019 nghịch biến trên khoảng nào?
A. 1 ; + ∞ .
B. (0;3)
C. − ∞ ; 3 .
D. 3 ; + ∞ .
Cho hàm số y= f(x) xác định và có đạo hàm trên ℝ thỏa mãn f 1 + 2 x 2 = x - f 1 - x 3 . Viết phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ bằng 1.
A. y = - 1 7 x - 6 7
B. y = 1 7 x - 8 7
C. y = - 1 7 x + 8 7
D. y = - x + 6 7
Đáp án A
Đặt f 1 = a f ' 1 = b , thay x = 0 vào giả thiết, ta được f 2 1 = - f 3 0 ⇔ a 3 + a 2 = 0 ⇔ [ a = 0 a = - 1
Đạo hàm cả 2 vế biểu thức f 2 1 + 2 x = x - f 3 1 - x , ta đưuọc
4 f ' 1 + 2 x . f 1 + 2 x = 1 + 3 f ' 1 - x . f 2 1 - x 1
Thay x = 0 vào (1), ta có 4 f ' 1 . f 1 = 1 + 3 f ' 1 . f 2 1 ⇔ 4 a b = 1 + 3 a 2 b 2
TH1. Với a = 0 thay vào (2), ta được 0 = 1 (vô lí)
TH2. Với a = -1 thay vào (2), ta được - 4 b = 1 + 3 b ⇔ b = - 1 7 ⇒ f ' 1 = - 1 7
Vậy phương trình tiếp tuyến cần tìm là y - f 1 = f ' 1 x - 1 ⇒ y = - 1 7 x - 6 7 .
Cho hàm số y = f(x) xác định và liên tục trên ℝ \ { 0 } thỏa mãn: x 2 f 2 ( x ) + ( 2 x - 1 ) f ( x ) = x f ' ( x ) - 1 đồng thời f ( 1 ) = - 2 Tính ∫ 1 2 f ( x ) d x
Cho hàm số y = f(x) xác định trên ℝ \ 1 2 thỏa mãn f ' x = 2 2 x − 1 , f 0 = 1. Giá trị của biểu thức f − 1 + f 3 bằng:
A. 4 + ln15
B. 2 + ln15
C. 3 + ln15
D. ln15
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f(x) > 0 với ∀ x ∈ ℝ , f ' ( x ) = - e x . f 2 x với ∀ x ∈ ℝ f 0 = 1 2 . Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x 0 = ln 2 là:
A. 2 x + 9 y - 2 ln 2 = 0
B. 2 x - 9 y - 2 ln 2 + 3 = 0
C. 2 x - 9 y + 2 ln 2 - 3 = 0
D. 2 x + 9 y - 2 ln 2 - 3 = 0
Đáp án D
Ta có f ' x = - e x . f 2 x ⇔ - f ' x f 2 x = e x ⇔ ∫ - f ' x f 2 x d x = ∫ e x d x ⇔ 1 f x = e x + C
Mà f 0 = 1 2 ⇒ 1 f 0 = e 0 + C ⇔ C + 1 = 2 ⇒ C = 1 → f x = 1 e x + 1
Do đó f ' x = - e x e x + 1 2 ⇒ f ' ln 2 = - 2 9 . Vậy phương trình tiếp tuyến là 2 x + 9 y - 2 ln 2 - 3 = 0 .
Cho hàm số f(x) xác định trên ℝ \ 0 , thỏa mãn f ' x = 1 x 3 + x 5 , f 1 = a và f(-2) = b. Tính f - 1 + f 2
A.f(-1) + f(2) = -a - b
B. f(-1) + f(2) = a - b
C. f(-1) + f(2) = a + b
D. f(-1) + f(2) = b - a
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f ( x ) > 0 , ∀ ∈ ℝ f ' x = - e x . f 2 x , ∀ ∈ ℝ f 0 = 1 2
Tính giá trị của f(ln2)
A. ln 2 + 1 2
B. 1 4
C. 1 3
D. ln 2 2 + 1 2
Đáp án C
Ta có f ' x = - e x . f 2 x ⇔ f ' x f 2 x = - e x ⇔ ∫ f ' x f 2 x d x = ∫ - e x d x = ∫ d f x f 2 x d x = - e x + C
⇔ - 1 f x = - e x + C ⇔ f x = 1 e x - C mà f 0 = 1 2 ⇒ 1 1 - C = 1 2 ⇒ C = - 1
Vậy f x = 1 e x + 1 ⇒ f ln 2 = 1 e ln 2 + 1 = 1 2 + 1 = 1 3 .