Cho tích phân I = ∫ 0 2 f x d x = 2. Tính tích phân J = ∫ 0 2 3 f x − 2 d x .
A. J = 6
B. J = 2
C. J = 8
D. J = 4
Cho tích phân I = ∫ 0 2 f ( x ) d x = 2 . Tính tích phân J = ∫ 0 2 3 f ( x ) - 2 d x
Cho hàm số f(x) thỏa mãn ∫ 0 1 ( x + 1 ) f ' ( x ) d x = 10 và 2f(1) - f(0) = 2 .Tính tích phân I = ∫ 0 1 f ( x ) d x .
A. I=-12.
B. I=8.
C. I=12.
D. I=-8
Cho hàm số y = f ( x ) = x 2 k h i 0 ≤ x ≤ 1 2 - x k h i 1 ≤ x ≤ 2
Tính tích phân I= ∫ 0 2 f ( x ) d x
Cho hàm số y = f(x) có đạo hàm f’(x) liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1 và I = ∫ 0 1 f x d x = 2 . Tính tích phân I = ∫ 0 1 f ' x d x
A. I = -1.
B. I = 1.
C. I = 2.
D. I = -2.
Chọn D.
Xét I = ∫ 0 1 f ' x d x Đặt t = x → t 2 = x → 2 t d t = d x
Đổi cận x = 0 → t = 0 x = 1 → t = 1 . Khi đó I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A
Tính A = ∫ 0 1 t f ' ( t ) d t . Đặt u = t d v = f ' t d t → d u = d t v = f t
Khi đó
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6
f(x)^3 + f(x)= x Tính tích phân f(x)dx từ 0 đến 2
Cho tích phân I = ∫ 0 4 f ( x ) d x = 32 . Tính tích phân J = ∫ 0 2 f ( 2 x ) d x
Cho hàm số f(x) liên tục trên [0;1] và f(1) – f(0) = 2. Tính tích phân ∫ 0 1 f ' x d x .
A. I = –1
B. I = 1
C. I = 2
D. I = 0
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho hàm số y=f(x) xác định và liên tục trên 0 ; + ∞ sao cho x2+ x.f(ex) + f(ex)=1 với mọi x ∈ 0 ; + ∞ . Tính tích phân I = ∫ e e ln x . f ( x ) x d x
A. -1/8
B. -2/3
C. 1/12
D. 3/8