Câu 1: Biết \(\int_{1}^{2}f(x) dx=4;\int_{2}^{6}f(x) dx=12,tính \int_{1}^{6}f(x) dx=?\)
Câu 2:Biết
\(\int_{3}^{9}f(x) dx=12.Tính \int_{1}^{3}f(x) dx\)
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 1,\(\int_0^1xf\left(x\right)dx=\dfrac{1}{5}\), \(\int_0^1\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}\) Tính tích phân \(I=\int_0^1f\left(x\right)dx\)
Cho hàm số f(x) liên tục trên R và \(\int\limits^6_2f\left(x\right)dx=6\). Tính tích phân I = \(\int\limits^2_0f\left(2x+2\right)dx\)
1, Cho hàm số f(x) liên tục , có đạo hàm trên R thỏa mãn 2f(3)-f(0)=18 và \(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\frac{302}{15}\). Tính tích phân \(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)
2, Cho hàm số f(x) liên tục , có đạo hàm trên đoạn [1;3] thỏa mãn f(3)=f(1)=3 và \(\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\). Tính tích phân \(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx\)
Nếu \(\int\limits^2_1\) f(x) dx = -2 và \(\int\limits^3_2\) f(x) dx =1 thì \(\int\limits^3_1\) f(x) dx bằng
A. -3
B. -1
C. 1
D. 3
Cho f(x) +2f'(x) + f"(x) =x^3 + 2x^2 . biết f(0)=f'(0)=1 . tính tích phân cận 0 đến 1 của f(x)
Biết f(x)=x^2 là một nguyên hàm của hàm số f(x) trên R giá trị của \(\int\limits^2_1\left[2+f\left(x\right)\right]dx\) bằng
A. 5
B. 3
C. \(\dfrac{13}{3}\)
D. \(\dfrac{7}{3}\)
Nếu \(\int_{a}^{b}f(x) dx=m; \int_{b}^{a}f(x) dx=n thì \int_{a}^{c}f(x) dx=?\)
Cho f '(x) >0 với mọi x thuộc [x, dương vô cực)' f (0)=0. Chứng minh với a>=0, b>=0, b thuộc tập xác định của f^-1 (Hàm đảo của f(x) chứ ko phải lũy thừa) thì ta sẽ có:
\(\int_0^af\left(x\right)dx+\int_0^bf^{-1}\left(y\right)dy>=ab\)