Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 1,\(\int_0^1xf\left(x\right)dx=\dfrac{1}{5}\), \(\int_0^1\left[f'\left(x\right)\right]^2dx=\dfrac{9}{5}\) Tính tích phân \(I=\int_0^1f\left(x\right)dx\)
giúp mình với:
1 CHO HÀM SỐ f(x) =y có đạo hàm liên tục trên [0,1], thỏa mãn :
(f '(x)2) +4 f(x)= 8x2+4 với mọi x[0,1] và f(1)=2]'
TÍNH \(\int_0^1f\left(x\right)dx\)
Hãy chon mệnh đề sai dưới đây:(mn chọn rồi giải thích từng đáp án giúp e với ạ, có thể bỏ qua đáp án A , còn đáp án B tại sao x phải >0 ạ , đáp án C e ko chắc lắm nên mn cứ gthich đi ạ, còn đáp án D có phải thêm đk của c không hay như vậy vẫn đúng ạ )
A. \(\int\limits^1_0x^2dx\ge\int\limits^1_0x^3dx\)
B. đạo hàm của F(x)= \(\int\limits^x_1\dfrac{dt}{1+t}\) là F'(x)= \(\dfrac{1}{1+x}\) (x>0)
C.hàm số f(x) liên tục trên \([-a;a]\) thì \(\int\limits^a_{-a}f\left(x\right)dx=2\int\limits_0^af\left(x\right)dx\)
D.nếu f(x) liên tục trên R thì \(\int\limits^b_af\left(x\right)dx+\int\limits^c_bf\left(x\right)dx=\int\limits^c_af\left(x\right)dx\)
Cho hàm số y=f(x) có các đạo hàm cấp một và đạo hàm cấp hai liên tục trên [0;1] và thỏa mản hệ thức \(\int\limits^1_0e^xf\left(x\right)dx=\int\limits^1_0e^xf'\left(x\right)dx=\int\limits^1_0e^xf''\left(x\right)dx\ne0\). Tính giá trị của biểu thức:\(\frac{ef'\left(1\right)-f'\left(0\right)}{ef\left(1\right)-f\left(0\right)}\)
Biết \(\int_{-1}^3f\left(x\right)dx=15\) . Tính giá trị của P = \(\int_0^2\left[f\left(3-2x\right)+2019\right]dx\)
42. Tính đạo hàm của hàm số F(x)= \(\int_0^{x^2}cos\sqrt{t}dt\) với x>0
43. Tìm giá trị nhỏ nhất m của hàm số F(x) = \(\int_1^x\left(t^2+t\right)dt\) trên đoạn [-1;1]
1, Cho hàm số f(x) liên tục , có đạo hàm trên R thỏa mãn 2f(3)-f(0)=18 và \(\int\limits^3_0\left(f'\left(x\right)+1\right)\sqrt{x+1}dx=\frac{302}{15}\). Tính tích phân \(I=\int\limits^3_0\frac{f\left(x\right)dx}{\sqrt{x+1}}\)
2, Cho hàm số f(x) liên tục , có đạo hàm trên đoạn [1;3] thỏa mãn f(3)=f(1)=3 và \(\int\limits^3_1\frac{xf'\left(x\right)}{x+1}dx=0\). Tính tích phân \(I=\int\limits^3_1\frac{f\left(x\right)+lnx}{\left(x+1\right)^2}dx\)
Câu 35: Cho hàm số f(x) thỏa mãn \(\int_0^6f\left(x\right)dx=4\) và \(\int_2^6f\left(x\right)dx=-3\). Tìm tích phân I = \(\int_0^2f\left(v\right)-3dv\)
Giả sử hàm số \(f\left(x\right)\) liên tục trên đoạn \(\left[-a;a\right]\)
Chứng minh rằng :
\(\int\limits^a_{-a}f\left(x\right)dx=\left\{{}\begin{matrix}2\int\limits^a_0f\left(x\right)dx;nếuflàhàmchẵn\\0;nếuflàhàmlẻ\end{matrix}\right.\)
Áp dụng để tính \(\int\limits^2_{-2}\ln\left(x+\sqrt{1+x^2}\right)dx\)