Cho hàm số y = a x 4 + b x 2 + c có đồ thị như hình vẽ bên. Tìm kết luận đúng.
A. a + b > 0
B. bc > 0
C. ab > 0
D. ac > 0
Cho hàm số y=f(x) liên tục trên K có đạo hàm f'(x) Đồ thị của hàm số f'(x) như hình vẽ bên.
Tìm số điểm cực trị của đồ thị hàm số f(x)?
A. 3
B. 1
C. 0
D. 2
Đáp án B
f'(x) đổi dấu 1 lần, suy ra đồ thị hàm số f(x) có 1 điểm cực trị.
Cho hàm số y = ( x - 1 ) ( x 2 - 4 ) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số y = x - 1 ( x 2 - 4 ) là hình nào dưới đây?
A. Hình 1
B. Hình 2
C. Hình 3
D. Hình 4
Cho đồ thị hàm số y = f(x) có đồ thị như hình vẽ bên
Tìm số nghiệm của phương trình f(x) = x
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đồ thị là (C), hàm số y=f'(x) có đồ thị như hình vẽ bên. Tiếp tuyến với (C) tại điểm có hoành độ x=2 cắt (C) tại hai điểm phân biệt có hoành độ lần lượt là a,b
Giá trị ( a - b ) 2 thuộc khoảng nào dưới đây
A. ( 0 ; 9 )
B. ( 12 ; 16 )
C. ( 16 ; + ∞ )
D. ( 9 ; 12 )
Cho hàm số y = f x = ax 3 + bx 2 + cx + d có đồ thị (C), đồ thị y = f '(x) như hình vẽ bên. Biết đồ thị hàm số y = f(x) có điểm cực tiểu có tung độ bằng 2 3 . Tính 3 a − b + 5 c + 3 d bằng?
A. -16
B. -12
C. 9
D. 10
Đáp án B
Nhìn vào đồ thị của hàm số y = f '(x) ta nhận thấy đồ thị hàm số đi qua các điểm (1;0), (3;0), (2;1) nên có hệ phương trình sau:
Nên đồ thị hàm số y = f(x) có điểm cực tiểu có tung độ bằng 2 3
Cho hàm số y= f( x) có đồ thị như hình vẽ bên
Tìm số điểm cực trị của hàm số y= 2f( x) – 3f( x)
A. 6
B. 5
C. 4
D. 3
Xét hàm số
Dựa vào đồ thị hàm số y= f( x) , ta thấy:
Phương trình (1) có 3 nghiệm phân biệt (vì hàm số y= f (x) có 3 điểm cực trị).
Phương trình (2) vô nghiệm vì đường thẳng y = log 2 3 ln 3 ln 2 < - 1 không cắt ĐTHS.
Vậy phương trình g’ (x) =0 có 3 nghiệm phân biệt hay hàm số đã cho có 3 điểm cực trị.
Chọn D.
Cho hàm số y=f( x) = ax3+ bx2+ cx+ d có đồ thị (C). Biết rằng đồ thị (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ âm và đồ thị hàm số y= f’(x) cho bởi hình vẽ bên. Tìm hàm số đã cho ?
A. y =x3-3x+2.
B. y=x3+3x+2.
C. y=x3-2x+2.
D. y =x3-3x-1.
+ Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.
Dựa vào đồ thị hàm số y= f’( x), ta thấy đồ thị hàm số y= f’ (x) là parabol có trục đối xứng là trục tung nên b=0
Đồ thị hàm số y= f’( x) đi qua 2 điểm (1;0) và (0; -3) thay vào f’(x) ; ta tìm được: a=1 và c= -3.
Suy ra: f’(x) = 3x2-3b và f(x) = x3-3x+d.
+ Do (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ âm nên ta có:
f’(x) =0 khi và chỉ khi x= -1;x= 1( loại)
Như vậy (C) đi qua điểm (-1; 4) ta tìm được d= 2
Khi đó; f( x) =x3-3x+2.
chọn A.
Cho hàm số y=f(x) liên tục trên R và có đồ thị là đường cong như hình vẽ bên. Tìm điểm cực tiểu của đồ thị hàm số y=f(x).
A. y=-2
B. x=0
C. M(0;-2)
D. N(2;2)
Đáp án C
Nhìn vào đồ thị thì điểm cực tiểu là điểm M(0;-2)
Cho hàm số y=f(x) có đồ thị như hình vẽ bên. Biết rằng f(x) là một trong bốn phương án A, B, C, D đưa ra dưới đây. Tìm f(x).
A. f(x) = x 4 - 2 x 2
B. f(x) = x 4 + 2 x 2
C. f(x) = - x 4 + 2 x 2 - 1
D. f(x) = - x 4 + 2 x 2
Cho hàm số y = x - a b x + c có đồ thị như hình vẽ bên. Tính giá trị của biểu thức A= a+ b+ c
A. - 2
B. -3
C. - 4
D. -5
Dựa vào đồ thị hàm số ta thấy:
Đồ thị hàm số có TCĐ và TCN là
Đồ thị hàm số đi qua điểm có tọa độ ( -2; 0) nên a= -2
Suy ra A= a+ b+ c= -2+ 1+ ( -2) = -3
Chọn B.