Gọi F(x) là một nguyên hàm của hàm số f x = x e − x . Tính F(x) biết F 0 = 1
A. F x = − x + 1 e − x + 1
B. F x = x + 1 e − x + 2
C. F x = x + 1 e − x + 1
D. F x = − x + 1 e − x + 2
Cho hàm số f(x) liên tục trên khoảng (-2; 3). Gọi F(x) là một nguyên hàm của f(x) trên khoảng (-2; 3). Tính , biết F(-1) = 1, F(2) = 4.
A. I = 6.
B. I = 10.
C. I = 3.
D. I = 9.
Biết rằng x e x là một nguyên hàm của hàm số f(-x) trên khoảng - ∞ , + ∞ . Gọi F(x) là một nguyên hàm của f ' x e x thỏa mãn F(0) =1, giá trị của F(-1) bằng:
A. 7 2
B. 5 - e 2
C. 7 - e 2
D. 5 2
Đáp án A
Phương pháp:
+) x e x là một nguyên hàm của hàm số nên x e x ' = f ( - x )
+) Từ f ( - x ) ⇒ f ( x )
+) F(x) là một nguyên hàm của f ' x e x ⇒ F ( x ) = ∫ f ' ( x ) e x d x
+) Tính F(x), từ đó tính F(-1)
Cách giải:
Vì x e x là một nguyên hàm của hàm số f ( - x ) nên x e x ' = f ( - x )
Biết F(x) là một nguyên hàm của hàm số f x = e - x + sin x thỏa mãn F(0) = 0. Tìm F(x)?
Đáp án A
Phương pháp :
Sử dụng bảng nguyên hàm cơ bản.
Cách giải:
Ta có:
Gọi F ( x ) là một nguyên hàm cùa hàm số f ( x ) = x + 2 x - 1 . Biết rằng đồ thị hàm số F ( x ) đi qua điểm A ( 2 ; 3 ) . Khi đó F ( x ) là
A. F ( x ) = x + 3 ln | x - 1 | + 1
B. F ( x ) x + 3 ln | x - 1 | - 1
C. F ( x ) = x + 3 ln ( x - 1 )
D. F ( x ) = x + 3 ln ( x - 1 ) + 1
f(x)=4sin2x.cos2x.sinx=4(1-cos2x)cos2x.sinx=(4cos4x-4cos2x)(-sinx)
Đặt u=cosx ---> F(x)=(4/5)cos5x-(4/3)cos3x+C
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng:
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên ℝ . Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. - 1 e
C. 3e
D. 20 e 2
Biết F ( x ) = ( a x 2 + b x + c ) e - x là một nguyên hàm của hàm số f ( x ) = ( 2 x 2 - 5 x + 2 ) e - x trên R. Giá trị của biểu thức f(F(0)) bằng
A. 9e
B. 3e
C. 20 e 2
D. - 1 e
Biết F(x) là một nguyên hàm của hàm số f x = e − 3 x + 3 và F 1 = e . Tính F(0)
A. F 0 = e 3
B. F 0 = 3 e − e 3 2
C. F 0 = e 3 + e 2
D. F 0 = − 2 e 3 + 3 e
Đáp án B
Ta có ∫ 0 1 e − 2 x + 3 d x = F 1 − F 0 ⇔ e − 2 x + 3 − 2 | 0 1 = e − F 0 ⇔ − e 2 + e 3 2 = e − F 0
Do đó F 0 = 3 e − e 3 2