Trong không gian với hệ tọa độ Oxy, cho mặt phẳng P : − 2 x + y − 3 z + 1 = 0. Một véctơ pháp tuyến của mặt phẳng (P) là:
A. n → = − 2 ; − 1 ; 3
B. n → = − 2 ; 1 ; 3
C. n → = 2 ; − 1 ; − 3
D. n → = 4 ; − 2 ; 6
Trong không gian với hệ tọa độ Oxy, cho đường thẳng ∆ : x 2 = y - 3 - 1 = z + 2 3 cắt mặt phẳng (P): x-2y+z+1=0 tại điểm M. Khi đó tọa độ điểm M là
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình là x - z - 3 = 0 . Tính góc giữa (P) và mặt phẳng (Oxy)
A. 30 °
B. 60 °
C. 45 °
D. 90 °
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y + z = 0 . Gọi d là giao tuyến của (P) với mặt phẳng (Oxy). Viết phương trình đường thẳng d
A. x = 0 y = t z = - t
B. x = t y = - t z = 0
C. x = t y = t z = - 2 t
D. x = t y = 0 z = - t
Chọn đáp án B
Phương trình đường thẳng d là giao tuyến của hai mặt phẳng (P) và (Oxy) thỏa mãn hệ phương trình:
Trong không gian với hệ tọa độ Oxy cho mặt phẳng (P): z-2x+3=0. Một vecto pháp tuyến của (P) là:
A. (0;1;-2)
B. (1;-2;3)
C. (2;0;-1)
D. (1;-2;0)
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x + 2 y - z - 1 = 0 , (Q): 3x-(m+2)y+(2m-1)z+3=0. Tìm m để hai mặt phẳng (P), (Q) vuông góc với nhau.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z-7=0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y + z - 3 = 0 và cho điểm A(1; 2; 3). Tìm tọa độ của điểm B đối xứng với A qua (P)
A. B(-1; 0; 1)
B. B(1; -1; 0)
C. B(-1; -1; -1)
D. B(1; -2; 1)
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14