Cho hàm số y=f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y=f'(x) được cho như hình vẽ bên. Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng
A. (-4;-2)
B. (2;4)
C. (0;2)
D. (-2;0)
Cho hàm số y = f(x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y = f '(x) được cho như hình vẽ bên. Hàm số y = f 1 − x 2 + x nghịch biến trên khoảng
A. (2;4)
B. (-4;-2)
C. (-2;0)
D. (0;2)
Cho hàm số y= f( x) có đạo hàm liên tục trên R. Bảng biến thiên của hàm số y= f’(x) được cho như hình vẽ dưới đây.
Hàm số nghịch biến trên khoảng
A. (2; 4)
B. (0; 2)
C. (- 2; 0)
D.(- 4;-2)
Cho hàm số y=f(x) có đạo hàm liên tục trên i. Bảng biến thiên của hàm số y =f'(x) được cho như hình vẽ
Hàm số y = f ( 1 - x 2 ) + x nghịch biến trên khoảng nào sau đây?
A. (-4;-2)
B. (-1; 1)
C. (1;3)
D. (-1;0)
Đáp án A
Vậy hàm số g(x) nghịch biến trên (-4; -2)
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. (1;+∞)
B.(-1;0)
C. (-∞;1)
D.(0;1)
Chọn đáp án D
Phương pháp
Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.
Hàm số liên tục trên (a;b) có y’>0 với x thuộc (a;b) thì hàm số đồng biến trên (a;b).
Cách giải
Từ BBT ta có hàm số đồng biến trên các khoảng (-∞;-1) và (0;1).
Cho hàm số y=f(x) liên tục và có đạo hàm trên R đồ thị hàm số y=f'(x) như hình vẽ bên dưới. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. 1 ; + ∞
B. - 1 ; 0
C. - ∞ ; 1
D. 0 ; 1
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có bảng biến thiên như sau:
Hàm số đồng biến trên các khoảng nào
A. (0;1)
B. (-1.0)
C. (-∞;1)
D. (1;+∞)
Chọn A.
Từ bẳng biến thiên suy ra hàm số đã cho đồng biến trên các khoảng (-∞;-1) và (0;1)
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Đồ thị của hàm số y=f '(x) cắt Ox tại điểm (2;0) như hình vẽ. Hàm số y=f(x) đồng biến trên khoảng nào sau đây?
A. - 1 ; + ∞ .
B. - ∞ ; 0 .
C.(-2;0).
D. - ∞ ; - 1 .
Chọn A.
Tập xác định của hàm số y=f(x) là D=R Từ đồ thị đã cho ta có: f ' ' x = 0 ⇔ x = - 1 x = 2 .
Bảng biến thiên.
Dựa vào bảng biến thiên của hàm số y=f(x) ta nhận thấy hàm số y=f(x) đồng biến trên khoảng
-
1
;
+
∞
.
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như hình bên. Đồ thị hàm số y=f(x) cắt đường thẳng y= -2018 tại bao nhiêu điểm?