Cho hàm số y=f(x) xác định, liên tục trên ℝ và có bảng biến thiên như hình sau:
Đồ thị hàm số cắt đường thẳng y = -2018 tại bao nhiêu điểm ?
A. 4
B. 0
C. 2
D. 1
Cho hàm số y = f(x) xác định và có đạo hàm trên R \ ± 1 . Hàm số có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị hàm số y = f(x) có tất cả bao nhiêu đường tiệm cận?
A. 1.
B. 2.
C. 3.
D. 4.
Cho hàm số y=f(x) xác định trên ℝ \ 1 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ
Hàm số y = f ( x ) có bao nhiêu điểm cực trị?
A. 4.
B. 3.
C. 2.
D. 5.
Cho hàm số y=f(x) xác định và liên tục trên R và có đồ thị là đường cong trong hình vẽ bên.
Hỏi điểm cực tiểu của đồ thị hàm số y= f(x) là điểm nào ?
A. x=-2
B. y=-2
C.
D.
Cho hàm số f(x) xác định trên R và có đồ thị của hàm số y= f’(x) như hình vẽ bên.
Hàm số y= f( x+ 2018) có mấy điểm cực trị?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) xác định và liên tục trên ℝ . Đồ thị của hàm số f(x) như hình bên. Số điểm cực trị của đồ thị hàm số y=f(f(x)) bằng?
A. 8.
B. 9
C. 10.
D. 11.
Cho hàm số f(x) có đạo hàm f'(x) xác định, liên tục trên ℝ và có đồ thị f'(x) như hình vẽ bên. Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
Cho hàm số y= f( x) có đạo hàm f’(x) xác định, liên tục trên R và f’( x) có đồ thị như hình vẽ bên. Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên ( 1; + ∞)
B. Hàm số đồng biến trên (-∞;-1) và (3; + ∞)
C. Hàm số nghịch biến trên (- ∞; -1)
D. Hàm số đồng biến trên
Cho hàm số y = f ( x ) xác định, liên tục trên đoạn [−2;2] và có đồ thị là đường cong trong hình vẽ bên. Hàm số y = f ( x ) đạt cực đại tại điểm nào dưới đây?
A. x=-2
B. x=-1
C. x=1
D. x=2