Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2017 lúc 4:37

Đáp án B

Ta có A C = A B tan A C B ^ = a 3 ; B C = 2 a

⇒ S A B C = 1 2 A B . A C = 3 2 a 2

Góc giữa đường thẳng SC và mặt phẳng A B C  là  60 °

⇒ S C B ^ = 60 ° ; S B = S C . tan S C B ^ = 2 a 3 V S . A B C = 1 3 S B . S A B C = 1 2 2 a 3 3 2 a 2 = a 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2017 lúc 10:08

Đáp án B

Tam giác SAB vuông tại A có  S B A ^ = 60 o nên SA= a 3  

Tam giác ABC vuông cân tại B nên

 

Do đó

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 4 2019 lúc 12:50

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 1 2017 lúc 11:10

Đáp án B.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2019 lúc 12:20

Đáp án là A.

+ Ta có: B C = A B tan 60 0 = a 3  

+ V S . A B C = 1 3 S A . S A B C = 1 6 . a . a 2 3 = a 3 6 3 = a 3 3 18 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 10 2018 lúc 9:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2018 lúc 3:02

Đáp án C

Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)

suy ra  S H ⊥ A B C

Ta có

  S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C   = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2019 lúc 16:53

Đáp án C

Phạm Thị Phương Thanh
Xem chi tiết
Trần Minh Ngọc
5 tháng 4 2016 lúc 12:50

A N B C H K S

Theo giả thiết, \(HA=HC=\frac{1}{2}AC=a\) và \(SH\perp\left(ABC\right)\)

Xét \(\Delta v.ABC\) ta có : \(BC=AC.\cos\widehat{ACB}=2a\cos30^0=\sqrt{3}a\)

Do đó : \(S_{\Delta.ABC}=\frac{1}{2}AC.BC.\sin\widehat{ACB}=\frac{1}{2}.2a.\sqrt{3}a.\sin30^0=\frac{\sqrt{3}a^2}{2}\)

Vậy \(V_{S.ABC}=\frac{1}{3}SH.S_{ABC}=\frac{1}{3}.\sqrt{2}a.\frac{\sqrt{3}}{2}a^2=\frac{\sqrt{6}a^3}{6}\)

Vì CA=2HA nên d(C,(SAB))=2d(H, (SAB))  (1)

Gọi N là trung điểm của Ab, ta có HN là đường trung bình của tam giác ABC

Do đó HN//BC suy ra AB vuông góc với HN.

Lại có AB vuông góc với Sh nên AB vuông góc với mặt phẳng (SHN).

Do đó mặt phẳng (SAB) vuông góc với mặt phẳng (SHN).

Mà Sn là giao tuyến của 2 mặt phẳng vừa nêu, nên trong mặt phẳng (SHN), hạ HK vuông góc với SN, ta có HK vuông góc với mặt phẳng (SAB)

Vì vậy d(J, (SAB)) = HK. Kết hợp với (1), suy ra d(C. (SAB))=2HK (2)

Vì \(SH\perp\left(ABC\right)\) nên \(SH\perp HN\), xét tam giác v.SHN, ta có :

\(\frac{1}{HK^2}=\frac{1}{SH^2}+\frac{1}{HN^2}=\frac{1}{2a^2}+\frac{1}{HN^2}\)

Vì HN là đường trung bình của tam giác ABC nên \(HN=\frac{1}{2}BC=\frac{\sqrt{3}a}{2}\)

Do \(\frac{1}{HK^2}=\frac{1}{2a^2}+\frac{4}{3a^2}=\frac{11}{6a^2}\) suy ra \(HK=\frac{\sqrt{66}a}{11}\) (3)

Thế (3) vào (2) ta được \(d\left(C,\left(SAB\right)\right)=\frac{\sqrt{66}a}{11}\)