Cho f x = x 4 - 5 x 2 + 4 . Gọi S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành. Mệnh đề nào sau đây sai?
A. S = ∫ - 2 2 f x d x
B. S = 2 ∫ 0 1 f x d x + 2 ∫ 1 2 f x d x
C. S = ∫ 0 2 f x d x
D. S = 2 ∫ 0 2 f x d x
Cho hàm số y=f(x) liên tuc trên R và thỏa mãn f(0)<0<f(-1) Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f x , y = 0 , x = − 1 v à x = 1. Xét các mênh đề sau
1. S = ∫ − 1 0 f x d x + ∫ 0 1 f x d x 2. S = ∫ − 1 1 f x d x 3. S = ∫ − 1 1 f x d x 4. S = ∫ − 1 1 f x d x
Số mệnh đề đúng là
A. 2
B. 1
C. 3
D. 4
Đáp án B
Do f 0 < 0 < f − 1 nên phương trình f x = 0 có ít nhất 1 nghiệm x ∈ − 1 ; 0
Đáp án đúng là S = ∫ − 1 1 f x d x
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a, x = b ( như hình bên). Biết ∫ a c f ( x ) d x = - 2 và ∫ c b f ( x ) d x = 5 . Hỏi S bằng bao nhiêu?
A. 7
B. 5
C. 2
D.3
Cho các Parabol có các đỉnh lần lượt là I1, I2. Gọi A, B là giao điểm của (P1) và Ox. Biết rằng 4 điểm A, B, I1, I2 tạo thành tứ giác lồi có diện tích bằng 10. Tính diện tích S của tam giác IAB với I là đỉnh của Parabol (P):
y = h(x) = f(x) + g(x). (P1): y = f(x) = 1 4 x 2 - x , P(2): y = g(x) = a x 2 - 4 a x + b (a>0)
A. S = 6.
B. S = 4.
C. S = 9.
D. S = 7.
Chọn A.
(P1): y = f(x) = 1 4 x 2 - x có đỉnh I 2 (2;-1)
P(2): y = g(x) = a x 2 - 4 a x + b (a>0)
Duy ra I1, I2, I cùng nằm trên đường thẳng x = 2.
Mà giao điểm của (P1) và Ox là A(4;0) và B(0;0).
Suy ra tứ giác lồi AI1BI2 có hai đường chéo vuông góc và b – 4a >0
Tam giác IAB có diện tích là
Biết đồ thị hàm số f ( x ) = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f ( x ) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2 .
B. S 1 S 2 = 1 4 .
C. S 1 S 2 = 1 2 .
D. S 1 S 2 = 1 .
Đáp án D
Phương trình hoành độ giao điểm của đồ thị f ( x ) và Ox: a x 4 + b x 2 + c = 0 .
Để phương trình có bốn nghiệm
Gọi x 1 , x 2 , x 3 , x 4 lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0 và x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a > 0 .
Khi đó
Suy ra x 1 = - - 5 b 6 a ; x 2 = - - b 6 a ; x 3 = - b 6 a ; x 4 = - b 6 a .
Do đồ thị hàm số f ( x ) nhận trục tung làm trục đối xứng nên ta có:
Suy ra
Vậy S 1 = S 2 hay S 1 S 2 = 1 .
Cho hình phẳng D giới hạn bởi đồ thị của hai hàm số y=f(x),y=g(x) (phần tô màu như hình vẽ). Gọi S là diện tích hình phẳng D. Mệnh đề nào dưới đây đúng?
A. S = ∫ - 3 0 [ f ( x ) - g ( x ) ] dx .
B. S = ∫ - 3 0 [ g ( x ) - f ( x ) ] dx .
C. S = ∫ - 3 0 [ f ( x ) + g ( x ) ] dx .
D. S = ∫ - 3 1 [ f ( x ) - g ( x ) ] 2 dx .
Biết đồ thị hàm số f x = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2
B. S 1 S 2 = 1 4
C. S 1 S 2 = 1 2
D. S 1 S 2 = 1
Biết đồ thị hàm số f x = a x 4 + b x 2 + c cắt trục hoành tại 4 điểm phân biệt. Gọi S 1 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm dưới trục hoành. Gọi S 2 là diện tích của hình phẳng giới hạn bởi trục hoành và phần đồ thị hàm số f(x) nằm phía trên trục hoành. Cho biết 5 b 2 = 36 a c . Tính tỉ số S 1 S 2
A. S 1 S 2 = 2
B. S 1 S 2 = 1 4
C. S 1 S 2 = 1 2
D. S 1 S 2 = 1
Đáp án D
Phương trình hoành độ giao điểm của đồ thị f(x) và Ox: a x 4 + b x 2 + c = 0 .
Để phương trình có bốn nghiệm
⇔ b 2 − 4 a c > 0 − b a > 0 c a > 0 ⇔ b 2 − 5 9 b 2 > 0 − b a > 0 c a > 0 ⇔ b ≠ 0 − b a > 0 c a > 0
Gọi x 1 , x 2 , x 3 , x 4 lần lượt là bốn nghiệm của phương trình a x 4 + b x 2 + c = 0 và x 1 < x 2 < x 3 < x 4 . Không mất tính tổng quát, giả sử a>0.
Khi đó x 2 = − b + 2 b 3 2 a = − b 6 a x 2 = − b − 2 b 3 2 a = − 5 b 6 a , b < 0 .
Suy ra
x 1 = − − 5 b 6 a ; x 2 = − − b 6 a ; x 3 = − b 6 a ; x 4 = − 5 b 6 a
Do đồ thị hàm số f(x) nhận trục tung làm trục đối xứng nên ta có:
S 1 = ∫ x 1 x 2 f x d x + ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 f x d x = − 2 ∫ x 3 x 4 a x 4 + b x 2 + c d x
= − 2 a x 5 5 + b x 3 3 + c x x 4 x 3 = 2 a x 3 5 5 + b x 3 3 3 + c x 3 − 2 a x 4 5 5 + b x 4 3 3 + c x 4 .
S 2 = ∫ x 2 x 3 f x d x = 2 ∫ 0 x 3 f x d x = 2 ∫ 0 x 3 a x 4 + b x 2 + c d x = 2 a x 5 5 + b x 3 3 + c x x 3 0
= 2 a x 3 5 5 + 2 b x 3 3 3 + 2 c x 3 .
Suy ra
S 2 − S 1 = 2 a x 4 5 5 + 2 a x 4 3 3 + 2 c x 4 = 2 a 5 − 5 b 6 a 5 + 2 b 3 − 5 b 6 a 3 + 2 c − 5 b 6 a
= 2 a 5 . 25 b 2 36 a 2 − 5 b 6 a − 2 b 3 . 5 b 6 a − 5 b 6 a + 2 c − 5 b 6 a = − 5 b 6 a 5 b 2 18 a − 5 b 2 9 a + 2 c
= − 5 b 6 a . − 5 b 2 + 36 a c 18 a = 0
Vậy S 1 = S 2 hay S 1 S 2 = 1 .
Cho hàm số y = f(x) liên tục trên R và thỏa mãn f(-1) > 0 > f(0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f(x), y = 0 và x = 1. Mệnh đề nào sau đây là đúng?
A. S = ∫ - 1 0 f ( x ) d x + ∫ 0 1 f ( x ) d x
B. S = ∫ - 1 1 f ( x ) d x
C. S = ∫ - 1 1 f ( x ) d x
D. S = ∫ - 1 1 f ( x ) d x
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và cắt trục hoành tại điểm x = c (như hình vẽ). Gọi S là diện tích hình phẳng được giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b. Khẳng định nào sau đây là khẳng định đúng?
Chọn D
Ta có
Vì f(x) < 0, ∀ x ∈ a ; c nên |f(x)| = –f(x).
Do đó, S 1 = - ∫ a c f x d x .
Tương tự, f(x) > 0, ∀ x ∈ a ; c nên |f(x)| = f(x).
Do đó, S 2 = ∫ c b f x d x .
Vậy S = - ∫ a c f x d x + ∫ c b f x d x .