Cho tứ diện ABCD. Gọi A,B',C' lần lượt là trọng tâm các tam giác BCD, ACD, ABD. Đặt A A ' → = a → , B B ' → = b → , C C ' → = c → . Mệnh đề nào sau đây đúng?
Cho tứ diện ABCD có thể tích là V. Gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Tính thể tích khối tứ diện A'B'C'D' theo V.
Cho tứ giác ABCD. Gọi A',B',C',D' lần lượt là trọng tâm của các tam giác BCD,ACD,ABD,ABC. Chứng minh AA',BB',CC',DD' đồng quy
a) G là trọng tâm của ABCD <=> vtGA + vtGB + vtGC + vtGD = vt0 (1*)
A' là trọng tâm của BCD <=> vtA'B + vtA'C + vtA'D = vt0
<=> 3.vtA'G + vtGB + vtGC + vtGD = vt0 (2*) (chen điểm G vào biểu thức trên)
lấy (1*) - (2*): vtGA - 3.vtA'G = vt0 <=> vtGA = 3.vtA'G
đẳng thức này chứng tỏ vtGA và vtA'G cùng hướng => G nằm trên đoạn AA'
tương tự có B' là trọng tâm của ACD <=> 3.vtB'G + vtGA + vtGC + vtGD = vt0 (3*)
lấy (1*) - (3*): vtGB - 3vtB'G = vt0 <=> vtGB = 3vtB'G
=> G nằm trên đoạn BB'
tiếp tục cho 2 phần còn lại
=> G là điểm chung của các đoạn AA', BB', CC', DD'
b) từ biểu thức trên có: vtGA = -3.vtGA'
=> G chia đoạn AA' theo tỉ số k = -3
các đoạn kia tương tự đều cùng tỉ số k = -3
c) từ cm trên ta có:
vtGA = -3vtGA'
vtGB = -3vtGB'
vtGC = -3vtGC'
vtGD = -3vtGD'
=> vtGA+vtGB+vtGC+vtGD+vtGD = -3(vtGA'+vtGB'+vtGC'+vtGD') (**)
mà G là trọng tâm của ABCD nên vtGA+vtGB+vtGC+vtGD = vt0
(**) => vtGA'+vtGB'+vtGC'+vtGD' = vt0 => G là trọng tâm của A'B'C'D'
Cho tứ diện ABCD. Gọi G 1 , G 2 , G 3 lần lượt là trọng tâm các tam giác ABC, ACD, ABD. Chứng minh rằng ( G 1 G 2 G 3 ) / / ( B C D ) .
Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 . Diện tích thiết diện đó bằng:
A. a 2 3 6
B. 2 a 2 3 3
C. a 2 2 4
D. a 2 2 6
BI = (a√3)/2 (đường cao tam giác đều)
Đáp án C
cho tứ giác abcd gọi a' b' c' d' lần lượt là trọng tâm bcd;acd;abd,abc. chứng minh rằng các đường thẳng aa';bb';cc' đồng qui
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 . Chu vi thiết diện đó bằng:
A. a 3 + 1
B. a 2 3 + 1 2
C. 2 a 3 + 1
D. 2 a 3 + 3 2
Chu vi ∆ABI = AB + 2AI = a + 2.(a√3)/2 = a(1 + √3)
Đáp án A
Cho khối tứ diện ABCD có thể tích 2017. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính theo V thể tích của khối tứ diện MNPQ.
A. 2017 9
B. 4034 81
C. 8068 27
D. 2017 27
Chọn D
(Do E, F, G lần lượt là trung điểm của BC, BD, CD).
Do mặt phẳng (MNP) (BCD) nên
Cho tứ diện ABCD. Gọi G 1 và G 2 lần lượt là trọng tâm của tam giác ACD và BCD. Chứng minh rằng G 1 G 2 song song với các mặt phẳng (ABC) và (ABD).
Gọi I là trung điểm của CD.
Vì G 1 là trọng tâm của tam giác ACD nên G 1 ∈ A I
Vì G 2 là trọng tâm của tam giác BCD nên G 2 ∈ B I
Ta có :
A B ⊂ ( A B C ) ⇒ G 1 G 2 / / ( A B C )
Và A B ⊂ ( A B D ) ⇒ G 1 G 2 / / ( A B D )
Cho tứ diện ABCD có thể tích V . Gọi M, N, P, Q lần lượt là trọng tâm tam giác ABC, ACD, ABD và BCD . Thể tích khối tứ diện MNPQ bằng
A. 4 V 9
B. V 27
C. V 9
D. 4 V 27