Chu vi ∆ABI = AB + 2AI = a + 2.(a√3)/2 = a(1 + √3)
Đáp án A
Chu vi ∆ABI = AB + 2AI = a + 2.(a√3)/2 = a(1 + √3)
Đáp án A
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 . Diện tích thiết diện đó bằng:
A. a 2 3 6
B. 2 a 2 3 3
C. a 2 2 4
D. a 2 2 6
Cho tứ diện đều ABCD cạnh bằng a. gọi trọng tâm các tam giác BCD, ACD lần lượt là G 1 , G 2 .
Tìm câu đúng nhất.
Thiết diện của hình tứ diện cắt bởi mặt phẳng ( B G 1 G 2 ) là:
A. Tam giác
B. Tứ giác
C. Tam giác cân
D. Hình thang
trong mặt phẳng với hệ trục tọa độ Oxy, cho hình vuông ABCD có tâm là điểm I. Gọi G(-1/3;0) và K(-1/3;-5/3) lần lượt là trọng tâm các tam giác ABI và ACD. Biết A(a;b) với a là số nguyên. Khi đó a^2+b^2 bằng bao nhiêu? giup em voi em cam on nhieu lammmm
Cho tứ diện đều ABCD có cạnh bằng a. Gọi G là trọng tâm tam giác ABC. Mặt phẳng (GCD) cắt tứ diện theo 1 thiết diện có diện tích là
A. a 2 3 2 .
B. a 2 2 4 .
C. a 2 2 6 .
D. a 2 4 4 .
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M và N lần lượt là trung điểm của AC và BC; P là trọng tâm tam giác BCD. Mặt phẳng (MNP) cắt tứ diện theo 1 thiết diện có diện tích là
A. a 2 11 2 .
B. a 2 2 4 .
C. a 2 11 4 .
D. a 2 3 4 .
Cho tứ diện đều ABCD có cạnh a. Gọi G, G’ lần lượt là trọng tâm của tam giác ABC và ABD. Diện tích của thiết diện của hình tứ diện khi cắt bởi mặt phẳng (BGG’) là:
A.
B.
C.
D.
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng?
(1) MN //(BCD)
(2) MN //(ACD)
(3) MN // (ABD)
A. Chỉ có (1) đúng
B. (2) và (3)
C. (1) và (2)
D. (1) và (3)
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a . Gọi M , N lần lượt là trung điểm các cạnh AC , BC ; P là trọng tâm tam giác BCD . Mặt phẳng (MNP) cắt tứ diện theo một thiết diện có diện tích là:
A . a 2 11 2
B . a 2 2 4
C . a 2 11 4
D . a 2 3 4
Cho tứ diện ABCD. Gọi G là trọng tâm của ΔBCD. Hai điểm M và N lần lượt thuộc cạnh BC,CD sao cho \(\dfrac{BM}{BC}=\dfrac{1}{4};\dfrac{NC}{ND}=\dfrac{3}{2}\). Chứng minh A,M,N,G đồng phẳng