Diện tích hình phẳng giới hạn bởi các đường y = x + sin 2 x , y = x , x = 0 , x = π là:
A. π 2
B. π 2 - 1
C. π - 1
D. π
Diện tích hình phẳng giới hạn bởi các đường cong y = sin x; y= cos x và các đường thẳng x = 0 , x = π bằng
A. 3 2
B. 2
C. 2 2
D. - 2 2
Đáp án C
Giải phương trình: s inx = cos x ⇒ x = π 4 (vì 0 ≤ x ≤ π )
S = ∫ 0 π s inx − cos x d x = 2 2
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Tính diện tích hình phẳng giới hạn bởi y = ( x + 1 ) 2 , x = sin x y
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = sin x , trục hoành và hai đường thẳng x = π ; x = 3 π 2 là
A.1
B. 1/2
C. 2
D.3/2
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x),y=0,x=0,x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0,x=a bằng
A. S/4.
B. 4S.
C. 2S.
D. S/2.
Diện tích hình phẳng giới hạn bởi các đường y = x 3 + 11 x - 6 , y = 6 x 2 , x = 0, x = 2. (Đơn vị diện tích)
A. 4 3
B. 5 2
C. 8 3
D. 18 23
Chọn B.
Đặt h x = x 3 + 11 x - 6 - 6 x 2 = x 3 - 6 x 2 + 11 x - 6 h x = 0 ⇔ x = 1 ∨ x = 2 ∨ x = 3 ( l o ạ i )
Bảng xét dấu
Diện tích hình phẳng được giới hạn bởi các đường y = x 3 + 3 x , y = - x và đường thẳng x = -2 là:
A. -12(dvdt).
B. 12(dvdt).
C. 4(dvdt).\
D. -4(dvdt).
Chọn B.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = x3 + 3x và y = -x là: x3 + 4x = 0 ⇔ x = 0
Ta có: x3 + 4x ≤ 0, ∀ x ∈ [-2;0].
Do đó:
Diện tích hình phẳng giới hạn bởi các đường y = x 3 ; y = - x ; x = 1
A. 4
B. 3 4
C. 1 4
D. 1
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3