Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(0;1;1); B(1;-2;0) và C(1;0;2). Vectơ nào dưới đây là một vectơ pháp tuyến của mặt phẳng (P)
A. (-4;2;-2)
B. (2;-1;1)
C. (4;2;2)
D. (2;1;-1)
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 2 ; 3 và mặt phẳng α : x − 4 y + z = 0 . Viết phương trình mặt phẳng β đi qua A và song song với mặt phẳng α .
A. x − 4 y + z − 4 = 0
B. x − 4 y + z + 4 = 0
C. 2 x + y + 2 z − 10 = 0
D. 2 x + y + 2 z + 10 = 0
Đáp án B.
Vì β song song với α nên loại đáp án C và D.
Thử trực tiếp thấy điểm A 1 ; 2 ; 3 thuộc mặt phẳng x − 4 y + z + 4 = 0 .
Do đó đáp án đúng là B.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng α : x − 4 y + z = 0 . Viết phương trình mặt phẳng β đi qua A và song song với mặt phẳng α .
A. x − 4 y + z − 4 = 0
B. x − 4 y + z + 4 = 0
C. 2 x + y + 2 z − 10 = 0
D. 2 x + y + 2 z + 10 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; -1; 0) và mặt phẳng (P): x - 2y - 3z + 10 = 0. Phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là:
A. x - 2y + 3z + 4 = 0
B. -x + 2y + 3z + 4 = 0
C. x - 2y - 3z + 4 = 0
D. x + 2y - 3z = 0.
Đáp án B
Phương trình mặt phẳng (Q) có dạng: x - 2y - 3z + m = 0 (m ≠ 10).
Vì (Q) đi qua điểm A(2; -1; 0) nên ta có 2 + 2 + m = 0 <=> m = -4.
Vậy phương trình mặt phẳng (Q) là x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;-2) và B(0;-2;3). Mặt phẳng (P) đi qua gốc tọa độ và vuông góc với đường thẳng đi qua hai điểm A, B có phương trình là
A. x - 2y + z = 0.
B. x - y + z = 0.
C. x + y - 3z = 0.
D. x + 3y - 5z = 0.
Chọn D.
Ta có (P) qua O(0;0;0) và nhận BA → = ( 1 ; 3 ; - 5 ) là một VTPT
⇒ ( P ) : x + 3 y - 5 z = 0 .
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;2) và mặt phẳng (P): 2x-y+z+1=0. Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là:
Trong không gian với hệ tọa độ Oxyz cho điểm \ A 1 ; - 1 ; 2 và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là
A. 2 x - y + z = 0
B. x + y + z - 2 = 0
C. 2 x + y - z + 1 = 0
D. 2 x - y + z - 5 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A − 1 ; 2 ; 3 và hai mặt phẳng P : x − 2 = 0 và Q : y − z − 1 = 0 . Viết phương trình mặt phẳng đi qua A và vuông góc với hai mặt phẳng P , Q
A. x + y + z − 5 = 0
B. x + z = 0
C. y + z − 5 = 0
D. x + y + 5 = 0
Đáp án C
Ta có n P → 1 ; 0 ; 0 ; n Q → 0 ; 1 ; − 1 suy ra n → = n P → ; n Q → = 0 ; 1 ; 1
Suy ra phương trình mặt phẳng cần tìm là: y + z − 5 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm A(3;-1;2) và mặt phẳng (P): 3x+y-z = 0. Mặt phẳng (Q) đi qua điểm A và song song với (P) có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3). Mặt phẳng (P) đi qua A và song song với mặt phẳng (Q): x+2y+3z+2 = 0 có phương trình là
A. x+2y+3z - 9 = 0
B. x+2y+3z - 13 = 0
C. x+2y+3z+5 = 0
D. x+2y+3z+13 = 0
Đáp án B
Phương pháp: (P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2
Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m
Cách giải:
(P)//(Q): x+2y+3z+2 = 0 => (P): x+2y+3z+m, m≠2
Mà
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3). Mặt phẳng (P) đi qua A và song song với mặt phẳng (Q): x+2y+3z+2=0 có phương trình là
A. x+2y+3z-9=0
B.x+2y+3z-13=0
C. x+2y+3z+5=0
D. x+2y+3z+13=0
Đáp án B
Phương pháp:
Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m
Cách giải:
Mà (thỏa mãn)