Đáp án B
Phương pháp:
![]()
![]()
Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m
Cách giải:
![]()
![]()
![]()
![]()
![]()
![]()
Mà (thỏa mãn)
Đáp án B
Phương pháp:
![]()
![]()
Thay tọa độ điểm A vào phương trình mặt phẳng (P) và tìm hằng số m
Cách giải:
![]()
![]()
![]()
![]()
![]()
![]()
Mà (thỏa mãn)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2; -1; 0) và mặt phẳng (P): x - 2y - 3z + 10 = 0. Phương trình mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là:
A. x - 2y + 3z + 4 = 0
B. -x + 2y + 3z + 4 = 0
C. x - 2y - 3z + 4 = 0
D. x + 2y - 3z = 0.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y - 1 - 2 = z + 1 3 và mặt phẳng ( α ) : - x + 2 y - 3 z = 0 . Gọi ρ là góc giữa đường thẳng d và mặt phẳng ( α ) . Khi đó, góc ρ bằng
A. 0 °
B. 45 °
C. 90 °
D. 60 °
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2;1;3), vuông góc với mặt phẳng (Q): x + y - 3z = 0 đồng thời (P) song song với trục Oz
A. x + y - 3 = 0
B. x - y - 1 = 0
C. 2x + y + 3z - 1 = 0
D. x - y + 1 = 0
Ba mặt phẳng x+2y-z-6=0 , 2x-y+3z+13=0, 3x-2y+3z+16=0 cắt nhau tại điểm A. Tọa độ của A là:
A. (-1;2;-3)
B. (1;-2;3)
C. (1;2;3)
D. (-1;-2;3)
Trong không gian với hệ toạ độ Oxyz, (α) là mặt phẳng đi qua điểm A ( 2 ; - 1 ; 5 ) và vuông góc với hai mặt phẳng ( P ) : 3 x – 2 y + z – 1 = 0 v à ( Q ) : 5 x – 4 y + 3 z + 10 = 0 . Phương trình mặt phẳng (α) là:
A. x + 2y + z- 5 = 0.
B. 2x – 4y – 2z – 9 = 0.
C. x - 2y + z -1 = 0
D. x- 2y- z + 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng α : x-2y+3z+1=0
A. (3;-2;1)
B. (1;-2;3)
C. (1;2;-3)
D. (1;-2;-3)
Trong không gian hệ tọa độ Oxyz, cho mặt
phẳng (P): x - 2y + 3z - 6 = 0.
Vectơ chỉ phương của đường thẳng d vuông
góc với (P) là.
![]()
![]()
![]()
![]()