Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 7:35

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 7 2017 lúc 16:50

Đáp án C.

Hướng dẫn giải: Gọi H là trung điểm AC.

Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.

Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC

suy ra S H ⊥ ( A B C )

Tam giác vuông  SBH, có

 

Tam giác vuông  ABC ,

có  A B = A C 2 - B C 2 = a 3

Diện tích tam giác vuông

S ∆ A B C = 1 2 B A . B C = a 3 2 2

Vậy  V S . A B C = 1 3 S ∆ A B C . S H = a 3 2

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 6 2018 lúc 13:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2017 lúc 3:44

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 6 2018 lúc 3:02

Đáp án C

Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)

suy ra  S H ⊥ A B C

Ta có

  S B , A B C = S B H ^ = 45 o ⇒ S H = B H = 1 2 A C = a 2 2 V S . A B C   = 1 3 . a 2 2 . 1 2 a 2 = a 3 2 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 9 2019 lúc 16:53

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 11 2018 lúc 15:54

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 4 2017 lúc 7:13

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2018 lúc 12:23

Đáp án C

Kẻ hinh chữ nhật A B C D như hình vẽ bên  ⇒ S D ⊥ A B C D

Diện tích tam giác ABC là S A B C = 1 2 . A B . A C = a 2

Suy ra V S . A B C = 1 3 . S D . S Δ A B C = a 2 3 . S D = 2 3 a 3 ⇒ S D = 2 a .

Bán kính mặt cầu ngoại tiếp khối chóp S . A B D C là

R = R A B D C 2 + S D 2 4 = a 5 2 2 + 2 a 2 4 = 3 a 2

Vậy bán kính mặt cầu cần tính là  R = 3 a 2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 9 2017 lúc 3:40

Gọi I là trung điểm của SA.

Tam giác SAB, SAC vuông tại  B , C   ⇒   I S   =   I A   =   I B = I C ⇒ I  là tâm mặt cầu ngoại tiếp chóp S.ABC.  

Gọi H là trung điểm của BC. Vì  vuông tại  là tâm đường tròn ngoại tiếp tam giác ABC.

⇒ I H   ⊥ A B C .

 

Gọi R là bán kính mặt cầu ngoại tiếp chóp S.ABC. Theo bài ra ta có:

 

Xét tam giác vuông ABC có:

B C   =   A B 2   +   A C 2   =   2 ⇒ A H   = 1

 

Xét tam giác vuông IAH có:

 

 

Ta có:

 

 

Xét tam giác vuông SAB

 

 

Ta có

 

Chọn A.