Cho a là một số thực dương. Tính I = ∫ 0 a e x ( x + 1 ) d x
Cho a là một số thực dương. Tính I = ∫ 0 a l x ( x + 1 ) d x
A. I = l a a
B. I = l a
C. I = l a ( a - 1 )
D. I = l a ( a + 1 )
Cho a là một số thực dương. Biết rằng F(x) là 1 nguyên hàm của \(f\left(x\right)=e^x\left(ln\left(ax\right)+\dfrac{1}{x}\right)\) thỏa mãn \(F\left(\dfrac{1}{a}\right)=0\) và \(F\left(2020\right)=e^{2020}\). Tìm a.
\(F\left(x\right)=\int\left(e^x.ln\left(ax\right)+\dfrac{e^x}{x}\right)dx=\int e^xln\left(ax\right)dx+\int\dfrac{e^x}{x}dx=\int e^xlnxdx+\int\dfrac{e^x}{x}dx+\int e^x.lna.dx\)
Xét \(I=\int e^xlnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=lnx.e^x-\int\dfrac{e^x}{x}dx\)
\(\Rightarrow F\left(x\right)=e^x.lnx+e^x.lna+C\)
\(F\left(\dfrac{1}{a}\right)=e^{\dfrac{1}{a}}ln\left(\dfrac{1}{a}\right)+e^{\dfrac{1}{a}}.lna+C=0\Rightarrow C=0\)
\(F\left(2020\right)=e^{2020}ln\left(2020\right)+e^{2020}.lna=e^{2020}\)
\(\Rightarrow ln\left(2020a\right)=1\Rightarrow a=\dfrac{e}{2020}\)
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>
Cho số thực a>0 Gỉa sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x) = 1 Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
A. a/3
B. a/2
C. a
D. 2a/3
Cho số thực a > 0. Gỉa sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f x . f a − x = 1. Tính tích phân I = ∫ 0 a 1 1 + f x d x
A. I = a 3
B. I = a 2
C. I = a
D. I = 2 a 3
Đáp án B
I = ∫ 0 a 1 1 + f x d x = ∫ 0 a d x 1 + 1 f a − x = ∫ 0 a f a − x 1 + f a − x d x
Cho a là số thực dương, tính tích phân I = ∫ - 1 a | x | d x theo a
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Cho a,b,c là các số thực dương, a ≠ 1 . Xét các mệnh đề sau
I 3 a = 2 ⇔ a = log 3 2 I I ∀ x ∈ ℝ \ 0 , log 2 x 2 = 2 log 2 x I I I log a b c = log a b . log a c
Trong ba mệnh đề I , I I , I I I số mệnh đề sai là
A. 2
B. 3
C. 1
D. 0