Gọi a, b là hai giá trị thực để hàm số f x = 2 x 2 + 6 3 − a x x 2 − 1 , x ≠ 1 a + b x + 2 , x = 1 liên tục tại x = 1. Biết rằng b = m n ; m ∈ ℤ , n ∈ ℕ và m n là phân số tối giản. Tính P = m + 2n
A. P = -17
B. P = =-5
C. P = -23
D. P = -13
Cho hàm số y=f(x) là hàm đa thức với hệ số thực. Hình vẽ bên dưới là một phần đồ thị của hai hàm số: y=f(x) và y=f'(x)
Tập các giá trị của tham số m để phương trình f ( x ) = m e x có hai nghiệm phân biệt trên [0;2] là nửa khoảng [a;b). Tổng a+b gần nhất với giá trị nào sau đây?
A. -0.81
B. -0.54
C. -0.27
D. 0.27
Gọi A, B là hai điểm cực trị của đồ thị hàm số f(x) = x3 - 3x2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y - 8 = 0.
A. m = 5
B. m = 2
C. m = 6
D. m = 4
Đầu tiên, ta cần tìm điểm cực trị của hàm số f(x) = x^3 - 3x^2 + m. Điều kiện cần và đủ để x_0 là điểm cực trị của hàm số y = f(x) là f’(x_0) = 0 và f’'(x_0) ≠ 0.
Ta có f’(x) = 3x^2 - 6x và f’'(x) = 6x - 6.
Giải phương trình f’(x) = 0, ta được x_1 = 0 và x_2 = 2. Kiểm tra điều kiện thứ hai, ta thấy f’‘(0) = -6 ≠ 0 và f’'(2) = 6 ≠ 0 nên x_1 = 0 và x_2 = 2 là hai điểm cực trị của hàm số.
Vậy, A = (0, f(0)) = (0, m) và B = (2, f(2)) = (2, 4 - m).
Trọng tâm G của tam giác OAB có tọa độ (x_G, y_G) = (1/3 * (x_A + x_B + x_O), 1/3 * (y_A + y_B + y_O)) = (2/3, 1/3 * (m + 4)).
Để G thuộc đường thẳng 3x + 3y - 8 = 0, ta cần có 3 * (2/3) + 3 * (1/3 * (m + 4)) - 8 = 0. Giải phương trình này, ta được m = 2.
Vậy, đáp án là B. m = 2.
Cho hàm số y=f(x) là hàm đa thức hệ số thực. Hình vẽ bên là đồ thị của hai hàm số y=f(x) và y=f'(x) . Phương trình f(x)= m e x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của a+b gần nhất với giá trị nào dưới đây ?
A. 0,27.
B. −0,54.
C. −0,27.
D. 0,54.
Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2
Đáp án A
Bài toán cần 5 điểm cực trị => Tổng số nghiệm của (1) và (2) phải là 5
Đối với (1) => số nghiệm chính là số điểm cực trị. Nhìn vào đồ thị => có 3 cực trị
=> Phương trinh (2) phải có 2 nghiệm khác 3 nghiệm trên. Nhìn vào đồ thị ta thấy
Cho hàm số f ( x ) = | 8 cos 4 x + a cos 2 x + b | , trong đó a, b là tham số thực. Gọi M là giá trị lớn nhất của hàm số. Tính tổng a+b khi M nhận giá trị nhỏ nhất.
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) có đồ thị như hình bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f x + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tổng T=a+b là
A. 2
B. 1
C. -1
D. 3
câu 19: Tìm giá trị thực của tham số m khác 0 để hàm số y= mx^2-2mx-3m-2 có giá trị nhỏ nhất bằng -10 trên R
câu 20: Gọi S là tập hợp tất cả giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y=f(x)=4x^2-4mx+m^2-2m trên đoạn [-2;0] bằng 3 . Tính tổng T các phần tử của S
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số f(x)= 2 x 3 + a x 2 - 4 x + b ( x - 1 ) 2 k h i x ≠ 1 3 c + 1 k h i x = 1 . Biết rằng a, b, c là giá trị thực để hàm số liên tục tại x 0 = 1 . Giá trị c thuộc khoảng nào sau đây?
A. c ∈ ( 0 ; 1 )
B. c ∈ 1 ; 2
C. c ∈ 2 ; 3
D. c ∈ 3 ; 4
Gọi A, B lần lượt là các giá trị nhỏ nhất, giá trị lớn nhất của hàm số y= x + m 2 + 2 m x - 2 trên đoạn [3;4]. Tìm tất cả các giá trị thực của tham số m để A+B= 19 2
A. m=1; m=-3
B. m=-1; m=3
C. m=3; m= -3
D. m=-4