Cho hình chóp S.ABC có S A = S B = S C = 1 . Gọi G là trọng tâm của tứ diện. Xét mặt phẳng α thay đổi đi qua điểm G và cắt các cạnh SA, SB, SC lần lượt tại D, E, F. Giá trị lớn nhất của biểu thức P = 1 S D . S E + 1 S E . S F + 1 S F . S D bằng
Cho hình chóp S.ABC có SA = SB = SC = 1. Gọi G là trọng tâm của tứ diện. Xét mặt phẳng (α) thay đổi đi qua điểm G và cắt các cạnh SA, SB, SC lần lượt tại D, E, F. Giá trị lớn nhất của biểu thức P = 1 S D . S E + 1 S E . S F + 1 S F . S D bằng
A. 16 3
B. 27 4
C. 16 9
D. 9 4
Cho hình chóp S.ABC có đáy vuông cân ở B, A C = a 2 ; S A ⊥ A B C ; S A = a . Gọi G là trọng tâm của ∆ S B C , mp α đi qua AG và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V.
A. 5 a 3 54
B. 4 a 3 9
C. 2 a 3 9
D. 4 a 3 27
Trong (SBC) qua G kẻ M N / / B C M ∈ S B ; N ∈ S C . Khi đó mặt phẳng đi qua AG và song song với BC chính là mặt phẳng (AMN). Mặt phẳng này chia khối chóp thành 2 khối S.AMN và AMNBC.
Gọi H là trung điểm của BC.
Vì M N / / B C
Theo định lí Ta-lét ta có:
Mà
Vậy
Chọn A.
Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC.
a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC).
b) Tính khoảng cách giữa hai đường thẳng AB và SG.
a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có
Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a
Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó
mà
nên
Cho hình chóp S.ABC có S A = S B = S C = a , A S B ^ = B S C ^ = C S A ^ = α . Gọi (b) là mặt phẳng đi qua A và các trung điểm của SB, SC. Tính diện tích thiết diện S của hình chóp cắt bởi mặt phẳng (b).
A. S = a 2 2 7 cos 2 α − 16 cos α + 9
B. S = a 2 2 7 cos 2 α − 6 cos α + 9
C. S = a 2 8 7 cos 2 α − 6 cos α + 9
D. S = a 2 8 7 cos 2 α − 16 cos α + 9
Cho hình chóp S.ABC có hình chiếu vuông góc của S lên mặt đáy là tâm O của đường tròn ngoại tiếp tam giác ABC. Biết SB = a và góc giữa cạnh bên SA và mặt đáy bằng 60o. Diện tích của mặt cầu ngoại tiếp hình chóp S.ABC là:
A. πa 2 3
B. 4 πa 2 3
C. 2 πa 2
D. Đáp án khác
Đáp án B
Từ giả thiết ta có SO là trục của đường tròn ngoại tiếp tam giác ABC và SA=SB=a. Trong mặt phẳng (SAO), trung trực của cạnh SA cắt SO tại I thì I là tâm của mặt cầu ngoại tiếp hình chóp. Khi đó ta tính được:
Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC
a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC)
b) Tính khoảng cách giữa hai đường thẳng AB và SG
Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 600. Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S. ABMN là:
A. a 3 3 2
B. a 3 3 4
C. a 3 3 3
D. a 3 3
Chọn A
Gọi H là trung điểm cạnh CD và O là tâm hình vuông ABCD.
Ta có S. ABCD là hình chóp tứ giác đều nên các mặt bên hợp với đáy các góc bằng nhau
Giả sử S C D , A B C D ^ = S H O ^ = 60 o
Tam giác SHO vuông tại O có:
Mà G là trọng tâm tam giác SAC nên G cũng là trọng tâm tam giác SBD
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 ° . Gọi (S ) là mặt cầu ngoại tiếp hình chóp S.ABC. Thể tích của khối cầu tạo nên bởi mặt cầu (S ) bằng
A. 32 π a 3 81
B. 64 π a 3 77
C. 32 π a 3 77
D. 72 π a 3 39
Đáp án A
Gọi O là tâm của tam giác A B C ⇒ S A ; A B C ^ = S A ; O A ^ = S A O ^ = 60 °
tam giác SAO vuông tại O, có
tan S A O ^ = S O O A ⇒ S O = tan 60 ° . a 3 3 = a ⇒ S A = O A 2 + S O 2 = 2 a 3 3
bán kính mặt cầu ngoại tiếp khối chóp là R = S A 2 2. S O = 2 a 3
vậy thể tích cần tính là V = 4 3 π R 3 = 4 3 π 2 a 3 3 = 32 π a 3 81
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 o Gọi (S ) là mặt cầu ngoại tiếp hình chóp S.ABC. Thể tích của khối cầu tạo nên bởi mặt cầu (S ) bằng