Bài 1 : Chứng minh ( a - 1 ) . ( a + 2 ) + 12 không chia hết cho 9 ( Trình bày rõ => like )
Bài 1 : Chứng minh rằng với mọi số nguyên a ta có : ( Trình bày rõ => like )
a, ( a - 1 ) . ( a + 2 ) + 12 không chia hết cho 9
b, ( a + 9 ) . ( a + 2 ) + 21 không chia hết cho 49
1a)Tacó:12 ko chia hết cho 9
=>(a-1).(a+2) ko chia hết cho 9
=>(a+1).(a+2)+12 ko chia hết cho 9
Câu b giải giống như câu a nhé!!!!!!!!!!!!!!!!
Bài 1 : Chứng minh ( a + 9 ) . ( a + 2 ) + 21 không chia hết cho 49 ( Trình bày rõ => like )
Gỉa sử:(a+9).(a+2) +21 chia hết cho 49
=>(a+9).(a+2)+21 chia hết cho 7 mà 21 chia hết cho 7
=>(a+9).(a+2) chia hết cho 7
=>(a+2+7).(a+2) chia hết cho 7
=>(a+2)2+(a+2).7 chia hết cho 7 mà (a+2).7 chia hết cho 7
=>(a+2)2chia hết cho 7 mà (a+2)2 là số chính phương
=>(a+2)2 chia hết cho 49 và a+2 chia hết cho 7
Khi đó:(a+2)2+7.(a+2)+21 chia hết cho 49
Vì (a+2)2 chia hết cho 49; a+2 chia hết cho 7=>7.(a+2) chia hết cho 49
=>21 chia hết cho 49 mà 21 không chia hết cho 49
=>(a+2)2+7.(a+2) +21 không chia hết cho 49
Vậy (a+9).(a+2) +21 không chia hết cho 49
Bài 1 : Chứng minh: ( Trình bày rõ => 2 likes )
a, ( a + 9 ) . ( a + 2 ) + 21 không chia hết cho 49
b, (a - 1 ) . ( a + 2 ) + 12 không chia hết cho 9
a,Gỉa sử :(a+9).(a+2)+21 chia hết cho 49
=>(a+9).(a+2) +21chia hết cho 7 mà 21 chia hết cho7
=>(a+2+7).(a+2) chia hết cho 7
=>(a+2)2+7.(a+2) chia hết cho 7 mà 7.(a+2) chia hết cho 7
=>(a+2)2 chia hết cho 7 =>(a+2)2 chia hết cho 49;a+2 chia hết cho 7
Khi đó:(a+2)2+7.(a+2) +21 chia hết cho 49 mà (a+2)2+7.(a+2) chia hết cho 49(vì a+2 chia hết cho 7)
=>21 chia hết cho 49 mà 21 không chia hết cho 49
=>(a+2)2+7.(a+2) +21 không chia hết cho 49
Vậy (a+9).(a+2) +21 không chia hết cho 49
b,Gỉa sử:(a-1).(a+2) +12 chia hết cho 9
=>(a-1).(a+2) +12 chia hết cho 3 mà 12 chia hết cho 3
=>(a-1).(a+2) chia hết cho 3
=>(a-1).(a-1+3) chia hết cho 3
=>(a-1)2+3.(a-1) chia hết cho 3 mà 3.(a-1)chia hết cho 3
=>(a-1)2 chia hết cho 3=>(a-1) chia hết cho 3
Khi đó :(a-1)2+3(a-1)+12 chia hết cho 9 mà (a-1)2 và 3(a-1) chia hết cho 9(vì a-1 chia hết cho 3)
=>12 chia hết cho 9 mà 12 không chia hết cho 9
=>(a-1)2+3.(a-1) +12 không chia hết cho 9
Vậy (a-1).(a+2) +12 không chia hết cho 9
=>
=>
Ta thấy: a + 9 - a - 2 = 7 chia hết cho 7 => a + 9 và a + 2 có cùng số dư khi chia cho 7
Xét 2 trường hợp xảy ra.
TH1: a + 2 và a + 9 đều chia hết cho 7
=> (a + 2)(a + 9) chia hết cho 49
Mà 21 không chia hết cho 49
=> (a + 2)(a + 9) + 21 không chia hết cho 49
TH2: a + 2 và a + 9 đều không chia hết cho 7
=> (a + 2)(a + 9) không chia hết cho 7, mà 21 chia hết cho 7
=>(a + 2)(a + 9) + 21 không chia hết cho 7 => Không chia hết cho 49
Từ 2 TH => (a + 9) . (a + 2) + 21 không chia hết cho 49 với mọi n
Mình đã làm dc ý a rồi , còn ý b làm thế nào z ?
Bài 1 : Cho m , n , p ,q là các số nguyên . Chứng minh rằng : ( m - n ) . ( m - p ) . ( m - q ) . ( n - p ) . ( n - q ) . ( p - q ) chia hết cho 12
( Trình bày rõ => like )
Đặt A=(m-n)(m-p)(m-q)(n-p)(n-q)(p-q)
Ta có: m,n,p,q là các số nguyên
=> theo nguyên lí Derichlet thì có ít nhất 2 số cùng số dư khi chia cho 3
=>hiệu của chúng chia hết cho 3
=>A chia hết cho 3 (1)
Giả sử trong 4 số trên đều không chia hết cho 2
=>hiệu 2 số bất kì đều chia hết cho 2
=>tích của chúng ít nhất chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử trong 4 số đó có 3 số không chia hết cho 2
=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2
=>tích của chúng chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử trong 4 số đó có 2 số không chia hết cho 2
=>hiệu của chúng chia hết cho 2
Và còn lại 2 số chia hết cho 2
=>hiệu của chúng cũng chia hết cho 2
=>A chia hết cho 4
Giả sử trong 4 số có 3 số chia hết cho 2
=>hiệu 2 số bất kì trong 3 số đó chia hết cho 2
=> tích của chúng chia hết cho 2.2=4
=>A chia hết cho 4
Giả sử cả 4 số đều chia hết cho 2
=>có ít nhất 2 hiệu chia hết cho 2
=>tích của chúng chia hết cho 2
=>A chia hết cho 4
Vậy A luôn chia hết cho 4 (2)
Từ (1) và (2) và (3;4)=1
=>A chia hết cho 3.4=12
Vậy A chia hết cho 12(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm
* Chứng minh chia hết cho 3
Khi chia 4 số nguyên a,b,c,d cho 3 được 3 số dư là 0,1,2. Theo nguyên lí dirichlet khi chia 4 số này cho 3 luôn tồn tại 2 số cùng dư khi chia cho 3. Suy ra hiệu của chúng chia hết co 3.Hiệu của chings là 1 trong 6 thừa số của biểu thức
vậy biểu thức chia hết cho 3. 1
*Chứng minh chia hết cho 4
TH1; nếu 4 số cùng tính chẵn lẻ. Suy ra hiệu của chúng chia hết cho 2
Suy ra biểu thức chia hết cho 2^6 tức là chia hết cho 4
TH2: nếu 3 số cùng tính chẵn lẻ .Suy ra hiệu 3 số đó chia hết cho 3
Suy ra biểu thức chia hết cho 2^3 tức là chia hết cho 4
TH3: nếu 2 số cùng tính chẵn lẻ. Suy ra 2 số còn lại cùng tính chẵn lẻ
Giả sử m,n cùng tính chẵn lẻ; p,q cùng tính chẵn lẻ
Suy ra m-n chi hết cho 2, p-q chia hết cho2. Suy ra (m-n)*(p-q) chia hết cho 4
Suy ra biểu thức chia hết cho 4
Vậy với mọi m,n,p,q thì biểu thức chia hết cho4. 2
Từ 1 và 2 suy ra biểu thức chia hết cho 3 và 4 mà (3,4) =1 suy ra biểu thức chia hết cho 12
Bài 1 : Chứng tỏ rằng : nếu số abcd chia hết cho 101 thì ab - cd chia hết cho 101 và ngược lại
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta đều có :
a, n . ( n + 2 ) ( n + 8 ) chia hết cho 3
b, n . ( n + 4 ) ( 2n + 1 ) chia hết cho 6
* Ai làm hết và trình bày rõ ràng tặng 3 like nha *
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
Bài 1 : Tổng của 6 số tự nhiên liên tiếp có chia hết cho 6 không ? Vì sao ?
Bài 2: Cho 3 số tự nhiên a, b , c sao cho a , b , c chia cho 9 được các số dư lần lượt là 1 , 3 , 5 . Hỏi tổng của 3 số đó có chia hết cho 9 không ? ( Trình bày rõ )
Bài 3 : Cho A = 27 + x + 9633. Tìm x thuộc N để :
a, A chia hết cho 9 b, A không chia hết cho 9
Bài 1: Gọi 6 số tự nhiên liên tiếp đó lần lượt là: a;a+1;a+2;a+3;a+4;a+5
Ta có: a+a+a+a+a+a+1+2+3+4+5=a.6+15.
Vì 15 không chia hết cho 6=> Tổng 6 số tự nhiên không chia hết cho 6.
Bài 2: Gọi thương của 3 phép chia đó lần lượt là: d;e;g
Ta có: a=dx9+1
b=ex9+3
c=gx9+5
Theo bài ra ta có: a+b+c=dx9+ex9+gx9+1+3+5
=> a+b+c=9x(d+e+g)+9
Vì 9x(d+e+g) chia hết cho 9 và 9 cũng chia hết cho 9.
=> Tổng 3 số tự nhiên đó chia hết cho 9.
Bài 3: a) cậu tự làm nhé tớ đánh máy nhọc rùi
Cho A = 3 + 32 + 33 + ... + 312
Chứng tỏ rằng : A chia hết cho 4 ; 12 ; 13 .
Ai trình bày rõ ràng , đúng & nhanh sẽ được like ! ^ - ^
A = 3+32+33+...+312
A = (3+32)+(33+34)+...+(311+312)
A = 1(3+32)+32(3+32)+...+311.(3+32)
A = 1.12 + 32.12 +....+311.12
A = 12(1+32+...+311) chia hết cho 12
Mà 12 chia hết cho 4
=> A chia hết cho 4
A = 3+32+33+...+312
A = (3+32+33)+(34+35+36)+...+(310+311+312)
A = 3(1+3+32)+34(1+3+32)+....+310(1+3+32)
A = 3.13 + 34.13 +.....+310.13
A = 13(3+34+....+310) chia hết cho 13
KL: A chia hết cho 4; 12; 13 (đpcm)
Chứng minh A không chia hết cho 9, biết:
A = ( a-1).(a+2)+12 không chia hết cho 9
bài toán lạ nhỉ,đã cho A chia hết cho 9 mà còn bào c/m nữa sao?
xem lại đề
Bài 1 : Chứng minh :
a) (3n+1) . (n-1)-n.(3n+1)+7 chia hết cho 3
.(n+3)-2n+3 chia hết cho 9
Bài 2 : Tìm x , y thuộc Z , để :
a)x.y=-7
b)(x+1).(y+2)=7
c) (x+1).(y+3)-4=3
Bài 3 :Tìm x thuộc Z , để :
a)x-4 chia hết cho x-1
b)3x+2 chia hết cho 2x-1
Bài 5 : Chứng minh : Với mọi a thuộc Z , thì :
a (a-1).(a+2)+12 không là Bội của 9
b)49 không là Ước của (a+2).(a+9)+21
Ai làm nhanh nhất mk cho 5 T.I.C.K