Tìm tất cả các giá trị của tham số m bất phương trình 4 x − 1 − m 2 x + 1 > 0 có nghiệm với x ∈ ℝ
A. m ≤ 0
B. m ∈ 0 ; + ∞
C. m ∈ 0 ; 1
D. m ∈ − ∞ ; 0 ∪ 1 ; + ∞
Tìm tất cả các giá trị của tham số m để phương trình x - 1 l o g 3 ( x + 1 ) = m có hai nghiệm phân biệt
A. -1 < m ≠ 0
B. m > -1
C. không tồn tại m
D. -1 < m < 0
Cho bất phương trình: m x 2 + 2 ( m - 1 ) x + m + 2 < 0 . Điều kiện của tham số m để bất phương trình đã cho vô nghiệm là
A. m > 0
B. m ≤ 0
C. m ≥ 1 4
D. m ≤ 1 4
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.
Cho bất phương trình x 4 + x 2 + m 3 - 2 x 2 + 1 3 + x 2 x 2 - 1 > 1 - m . Tìm tất cả các giá trị thực của tham số m để bất phương trình trên nghiệm đúng ∀ x > 1 .
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)
Cho bất phương trình : 1 - x ( m x - 2 ) < 0 ( * ) Xét các mệnh đề sau:
(1) Bất phương trình tương đương với mx - 2 <0
(2) m ≥ 0 là điều kiện cần để mọi x< 1 là nghiệm của bất phương trình (*)
(3) Với m < 0 , tập nghiệm của bất phương trình là 2/m< x< 1
Mệnh đề nào đúng?
A. Chỉ (1)
B. Chỉ (3)
C. (2) và (3)
D. Tất cả đúng
Cho bất phương trình : 1 - x ( mx - 2 ) < 0 ( * )
Xét các mệnh đề sau:
(I) Bất phương trình tương đương với mx - 2 < 0;
(II) m ≥ 0 là điều kiện cần để mọi x < 1 là nghiệm của bất phương trình (*)
(III) Với m < 0 , tập nghiệm của bất phương trình là 2 m < x < 1
Mệnh đề nào đúng?
A. Chỉ (I)
B. Chỉ (III)
C. (II) và (III)
D. Cả (I), (II), (III)
Tìm tất cả các giá trị nguyên dương của tham số m sao cho bất phương trình sau có nghiệm x - 1 + 4 - x ≥ m .
A. m ≤ 6
B. m ≥ 6
C. m ≤ 3
D. 3 ≤ m ≤ 6
Câu 1. Tìm tất cả các giá trị thực của tham số
m
để phương trình
2
m x m 4 3 6
vô nghiệm.
A.
m 1.
B.
m 2.
C.
m 2.
D.
m 2.
Câu 2. Tìm tất cả các giá trị thực của tham số
m
để phương trình
mx m 0
vô nghiệm.
A.
m.
B.
m 0 .
C.
m .
D.
m .
Câu 3. Tìm giá trị thực của tham số
m
để phương trình
2 2
m m x m m 5 6 2
vô nghiệm.
A.
m 1.
B.
m 2.
C.
m 3.
D.
m 6.
Câu 4. Cho phương trình
2
m x m x m 1 1 7 5
. Tìm tất cả các giá trị thực của tham số
m
để phương trình đã cho vô
nghiệm.
A.
m 1.
B.
m m 2; 3.
C.
m 2.
D.
m 3.
Câu 6. Tìm tất cả các giá trị thực của tham số
m
để phương trình
2 4 2 m x m
có nghiệm duy nhất.
A.
m 1.
B.
m 2.
C.
m 1.
D.
m 2.
Trang 24
Câu 11. Tìm tất cả các giá trị thực của tham số để phương trình có nghiệm đúng với mọi thuộc
A. B. C. D.
Vấn đề 2. SỐ NGHIỆM CỦA PHƯƠNG TRÌNH BẬC HAI
Câu 16. Phương trình
2
ax bx c 0
có nghiệm duy nhất khi và chỉ khi:
A.
a 0.
B.
0
0
a
hoặc
0
.
0
a
b
C.
abc 0.
D.
0
.
0
a
Câu 17. Số 1
là nghiệm của phương trình nào trong các phương trình sau?
A.
2
x x 4 2 0.
B.
2
2 5 7 0. x x
C.
2
3 5 2 0. x x
D.
3
x 1 0.
Câu 20. Phương trình vô nghiệm khi:
A. B. C. D.
Câu 22. Phương trình có nghiệm kép khi:
A. B. C. D.
m
2 m x m 1 1 x .
m 1. m 1. m 1. m 0. 2 m x mx m 1 2 2 0 m 2. m 2. m 2. m 2. 2 m x x – 2 2 –1 0 m m 1; 2. m 1. m 2. m 1.
Trang 25
Câu 23. Phương trình có nghiệm duy nhất khi:
A. B. C. D.
Câu 24. Phương trình có nghiệm duy nhất khi:
A. B. C. D.
Câu 25. Phương trình có nghiệm kép khi:
A. B. C. D.
Vấn đề 3. DẤU CỦA NGHIỆM PHƯƠNG TRÌNH BẬC HAI
Câu 41. Phương trình
2
ax bx c a 0 0
có hai nghiệm phân biệt cùng dấu khi và chỉ khi:
A.
0
.
P 0
B.
0
.
P 0
C.
0
.
S 0
D.
0
.
S 0
Câu 42. Phương trình
2
ax bx c a 0 0
có hai nghiệm âm phân biệt khi và chỉ khi:
A.
0
.
P 0
B.
0
0.
0
P
S
C.
0
0.
0
P
S
D.
0
.
S 0
2 mx x m 6 4 3 m . m 0. m . m 0. 2 mx m x m – 2 1 1 0 m 0. m 1. m m 0; 1. m 1. 2 m x m x m 1 – 6 1 2 3 0 m 1. 6
1;
7
m m
6
.
7
m
6
.
7
m
Trang 26
Câu 43. Phương trình
2
ax bx c a 0 0
có hai nghiệm dương phân biệt khi và chỉ khi:
A.
0
.
P 0
B.
0
0.
0
P
S
C.
0
0.
0
P
S
D.
0
.
S 0
Câu 44. Phương trình
2
ax bx c a 0 0
có hai nghiệm trái dấu khi và chỉ khi:
A.
0
.
S 0
B.
0
.
S 0
C.
P 0.
D.
P 0.
Câu 45. Phương trình
2
x mx 1 0
có hai nghiệm âm phân biệt khi:
A.
m 2.
B.
m 2.
C.
m 2.
D.
m 0.
Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0
với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ ( - ∞ , 0 )
A. m > 2 + 2 3 3
B. m > 2 - 2 3 3
C. m ≥ 2 - 2 3 3
D. m ≥ - 2 - 2 3 3