Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ A B C D , S A = x . Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau một góc bằng 60 °
A. x = a 3
B. x = a
C. x = a 3 2
D. x = a 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối cầu ngoại tiếp hình chóp S.ABCD bằng
A. πa 3 3
B. 2 πa 3 3
C. πa 3 6
D. 11 11 πa 3 162
Gọi M là trung điểm AB, do tam giác SAB vuông tại S nên MS = MA = MB
Gọi H là hình chiếu của S trên AB. Từ giả thiết suy ra
Ta có nên là trục của tam giác SAB, suy ra OA = OB = OS (2)
Từ (1) và (2) ta có OS = OA = OB = OC = OD.
Vậy O là tâm mặt cầu ngoại tiếp khối chóp S.ABCD bán kính
Chọn B.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SD= 3 a 2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA=SB=SC=SD=a√2; O là tâm của hình vuông ABCD.
a) C/m (SAC) và (SBD) cùng vuông góc với (ABCD).
b) C/m (SAC) ⊥(SBD)
c) Tính khoảg cách từ S đến (ABCD)
d) Tính góc giữa đường SB và (ABCD).
e) Gọi M là trung điểm của CD, hạ OH⊥SM, chứng minh H là trực tâm tam giác SCD
f) Tính góc giưa hai mặt phẳng (SCD) và (ABCD)
g) Tính khoảng cách giữa SM và BC; SM và AB.
a: SO vuông góc (ABCD)
=>(SAC) vuông góc (ABCD)
SO vuông góc (ABCD)
=>(SBD) vuông góc (ABCD)
b: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
d: (SB;(ABCD))=(BS;BO)=góc SBO
cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2
=>góc SBO=60 độ
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 . Góc giữa đường thẳng SC và mặt phẳng đáy(ABCD) là
A. 30°
B. 45°
C. 60°
D. 120°
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) là
A. 30 0
B. 45 0
C. 60 0
D. 120 0
Cho hình chóp S.ABCD có đáy là hình thang vuông ở A và D, cạnh đáy AB = a, cạnh đáy CD = 2a, AD = a. Hình chiếu vuông góc của S lên đáy trùng với trung điểm CD. Biết rằng diện tích mặt bên (SBC) bằng 3 a 2 2 . Thể tích của hình chóp S.ABCD bằng:
A. a 3 B. 3 a 3 2
C. 3 a 3 D. 3 2 a 3
Chọn A.
Gọi H là trung điểm của CD, M là trung điểm của BC. Khi đó HM ⊥ BC, SM ⊥ BC. Dễ thấy tam giác HBC vuông cân ở H, do đó tính được BC, SM. Từ đó tính được SH.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy (ABCD) và S C = a 5 . Tính thể tích khối chóp S.ABCD
A. V = a 3 3 3 .
B. V = a 3 3 6 .
C. V = a 3 3 .
D. V = a 3 15 3 .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với đáy A B C D và S C = a 5 . Tính thể tích khối chóp S.ABCD.
A. V = a 3 3 3 .
B. V = a 3 3 6 .
C. V = a 3 3 .
D. V = a 3 15 3 .
Đáp án A
Tam giác SAC vuông tại A suy ra:
S A = S C 2 − A C 2 = a 5 2 − a 2 2 = a 3
Thể tích khối chóp S.ABCD là
V S . A B C D = 1 3 . S A . S S . A B C D = 1 3 . a 3 . a 2 = a 3 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.
A. V = 6 a 3 12
B. V = 6 a 3 3
C. V = 6 a 3 4
D. V = 6 a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD
A. V = 6 a 3 12
B. V = 6 a 3 3
C. V = 6 a 3 4
D. V = 2 a 3 6
Vẽ S H ⊥ A C tại H.
Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C
⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D
Theo đề ∆ S A C vuông tại S nên ta có:
S C = A C 2 - S A 2 = 6 a 2
và S H = S A . S C A C
= 2 a 2 . 6 a 2 2 a = 6 a 4
Vậy V = 1 3 S H . S A B C D = 6 a 3 12
Chọn đáp án A.