Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhoc Nhi Nho
Xem chi tiết

Cách 1 : a4 + b4≥ a3.b + a.b3 
Khi và chỉ khi a4 + b4 - a3.b - a.b3 ≥ 0 
Khi và chỉ khi a3 (a - b) - b3 (a - b) ≥ 0 
Khi và chỉ khi (a - b)(a3 - b3) ≥ 0 khi và chỉ khi (a - b)(a - b)(a2 + ab + b2) ≥ 0 
Khi và chỉ khi (a - b)2[(a + b/2)2 + 3.b3/4] ≥ 0 (hiển nhiên đúng với mọi a,b) 
Cách 2 : Ta có[ a2 - b2]2 ≥ 0 
=> a4 - 2.a2.b2 + b4 ≥ 0 
=> a4 + b4 ≥ 2.a2.b2 
=> a4 + b4 + a4 + b4 ≥ a4 + b4 + 2.a2.b2 
=> 2( a4 + b4) &ge ; ( a2 + b2)2 (1) 
Mặt khác (a - b)2≥ 0 
=> a2 - 2ab + b2 ≥ 0 
=> a2 + b2≥2ab 
=> (a2 + b2)( a2 + b2)≥2ab (a2 + b2) 
=> (a2 + b2)2 ≥2ab (a2 + b2) (2) 
Từ (1) và (2) => 2( a4 + b4 ) ≥ 2ab (a2 + b2) 
=> ( a4 + b4 )≥ a3.b + a.b3 
Cách 3 : 
( a4 + b4 ) -( a3.b + a.b3) = 1/2 (2 a4 + 2 b4 - 2 a3.b -2 a.b3) 
= 1/2 [(a4 - 2 a3.b + 

Nhoc Nhi Nho
Xem chi tiết
Bụng ღ Mon
Xem chi tiết

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

nguyen phuong thao
Xem chi tiết
nguyen phuong thao
3 tháng 2 2017 lúc 16:02

ai làm được trước mình tích nha

Đặng Nguyễn Khánh Uyên
3 tháng 2 2017 lúc 16:08

Cái này phải có 1 Điều kiện gì đó chứ bạn . Nếu không là 1 đống đấy 
VD : a = 1 ; b = 1 ; c = 1 
=> 1.1.1 < 1.1 + 1.1 + 1.1 
<=> 1 < 3 ( Chọn ) 
a = 1 ; b = 2 ; c = 3 
=> 1.2.3 < 2.3 + 1.2 + 1.3 
<=> 6 < 11 (chọn )

Đặng Nguyễn Khánh Uyên
3 tháng 2 2017 lúc 16:10

tóm lại có 6 bộ (2;3;5);(2;5;3);(3;2;5);(3;5;2);(5;2;3);(5;3;2)

ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 22:01

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

Phạm Ngọc Uyên
Xem chi tiết
Quý Lương
26 tháng 11 2018 lúc 15:29

Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)

Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.

Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121

Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố 

Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7

                                        và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3

                                        và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...

Nguyễn Ngọc Mai Chi
Xem chi tiết
Nguyễn Cẩm Vân
30 tháng 3 2016 lúc 21:09

abc<ab+bc+ca

->abc/abc<ab/abc+bc/abc+ca/abc

->1<1/a+1/b+1/c

ko mất tính tổng quát gsử a<=b<=c

->1/a>=1/b>=1/c

->1/a+1/b+1/c<=3/a

->3/a>=1

->a<=3 .mà a là snt

->a=2;3

+,a=2 thì1/b+1/c=1/2

mà 1/b+1/c<=2/b

->2/b>=1/2

->b<=4 mà b là snt

->b=2;3;4. bn tự giản từng trường hợp của b mà tìm c nhé

+,b=3 giải tương tự b=2

có j ko hỉu bn nt cho mk nha

Nguyễn Nam Cao
30 tháng 3 2016 lúc 20:59

k đi mình làm cho

Kang Yumy
Xem chi tiết
PHÚC
25 tháng 3 2016 lúc 19:58

1

đúng mà mình làm rùi

Phùng Tiến Thành
29 tháng 5 2016 lúc 12:42

(1,1,1); (2,3,5)

nguyen phuong thao
3 tháng 2 2017 lúc 16:00

Tìm tất cả các bộ 3 số nguyên tố (a,b,c) sao cho: abc < ab+bc+ac

Ngô Đức Tài
Xem chi tiết
Hoang Hung Quan
24 tháng 3 2017 lúc 21:01

Giải:

Không mất tính tổng quát, ta giả sử: \(2\le c\le b\le a\left(1\right)\)

Từ \(abc< ab+bc+ca\) chia hai vế cho \(abc\) ta được:

\(1< \dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{a}\left(2\right)\)

Từ \(\left(1\right)\) ta có:

\(\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{a}\le\dfrac{3}{c}\) nên \(1< \dfrac{3}{c}\Rightarrow c< 3\Rightarrow c=2\)

Thay \(c=2\) vào \(\left(2\right)\) ta có:

\(\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{b}\le\dfrac{2}{b}\Rightarrow b\le4\)

\(b\) là số nguyên tố nên \(\left[{}\begin{matrix}b=2\\b=3\end{matrix}\right.\)

Với \(b=2\Rightarrow\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{2}\Rightarrow\dfrac{1}{a}>0\) đúng với mọi số nguyên tố \(a\)

Với \(b=3\Rightarrow\dfrac{1}{2}< \dfrac{1}{a}+\dfrac{1}{3}\Rightarrow\dfrac{1}{a}>\dfrac{1}{6}\Rightarrow a< 6\)

\(a\) là số nguyên tố nên \(\left[{}\begin{matrix}a=3\\a=5\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)=\left(5;3;2\right);\left(3;3;2\right);\left(a;2;2\right)\) với \(a\) là số nguyên tố bất kỳ