Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chu Ngọc Ngân Giang
Xem chi tiết
Xua Tan Hận Thù
Xem chi tiết
Xua Tan Hận Thù
10 tháng 11 2017 lúc 20:14

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

bella nguyen
Xem chi tiết
Lưu Hiền
25 tháng 10 2016 lúc 19:51

cái này đồng nhất hệ số đi nhá

Lương Ngọc Lan
Xem chi tiết
Le Thi Khanh Huyen
4 tháng 10 2016 lúc 17:15

a) Đặt \(f\left(x\right)=x^4+ax+b\text{⋮}x^2-4=\left(x+2\right)\left(x-2\right)\)

Áp dụng định lý Bê du có :

\(f\left(2\right)=f\left(-2\right)=0\)

\(\Rightarrow2^4+\left(-2\right).a+b=\left(-2\right)^4+2a+b\)

\(\Leftrightarrow a=0\)

Do đó \(\hept{\begin{cases}a=0\\b\in R\end{cases}}\)

Vậy ...

b) Mình không làm được :) Mình sẽ hỏi cô mình và trả lời cho bạn sau.

Hoàng Lê Bảo Ngọc
4 tháng 10 2016 lúc 17:38

a/ Đặt \(f\left(x\right)=x^4+ax+b=\left(x-2\right)\left(x+2\right).Q\left(x\right)\)với Q(x) là đa thức thương

Suy ra : \(\hept{\begin{cases}f\left(2\right)=16+2a+b=0\\f\left(-2\right)=16-2a+b=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2a+b=-16\\-2a+b=-16\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=-16\end{cases}}\)

b/ Ta có \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

Vậy \(x^2+ax+b\) sẽ có một trong hai dạng : \(x^2+ax+b=x^2+2x+2\Rightarrow\hept{\begin{cases}a=2\\b=2\end{cases}}\)

hoặc \(x^2+ax+b=x^2-2x+2\Rightarrow\hept{\begin{cases}a=-2\\b=2\end{cases}}\)

phan ngọc huyền
Xem chi tiết
nguyễn phạm lan anh
Xem chi tiết
Mai Thanh
Xem chi tiết
Diệp Ngọc
Xem chi tiết
Lê Song Phương
25 tháng 8 2023 lúc 19:30

  Để \(P\left(x\right)=x^4+ax+b⋮x^2-1\) thì \(P\left(x\right)=\left(x^2-1\right)Q\left(x\right)=\left(x-1\right)\left(x+1\right)Q\left(x\right)\) với \(Q\left(x\right)\) là đa thức có bậc là 2.

 Suy ra \(P\left(-1\right)=P\left(1\right)=0\)

 \(\Rightarrow\left\{{}\begin{matrix}\left(-1\right)^4+a.\left(-1\right)^3+b=0\\1^4+a.1^3+b=0\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}b-a=-1\\a+b=-1\end{matrix}\right.\)

 \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)

 Với \(\left(a,b\right)=\left(0;-1\right)\) thì \(P\left(x\right)=x^4-1=\left(x^2-1\right)\left(x^2+1\right)\) thỏa mãn ycbt. Vậy \(\left(a,b\right)=\left(0;-1\right)\)

Nguyễn Ngọc Gia Khang
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 8 2021 lúc 9:46

Để x4 + ax2 + b chia hết cho x2 + x + 1 thì x4 + ax2 + b khi phân tích phải có nhân tử là x2 + x + 1

Sau khi phân tích thì x4 + ax2 + b có dạng ( x2 + x + 1 )( x2 + cx + d )

=> x4 + ax2 + b = ( x2 + x + 1 )( x2 + cx + d )

<=> x4 + ax2 + b = x4 + cx3 + dx2 + x3 + cx2 + dx + x2 + cx + d

<=> x4 + ax2 + b = x4 + ( c + 1 )x3 + ( c + d + 1 )x2 + ( c + d )x + d

Đồng nhất hệ số ta có : \(\hept{\begin{cases}c+1=0\\c+d+1=a\\c+d=0\end{cases}};d=b\Rightarrow\hept{\begin{cases}a=b=d=1\\c=-1\end{cases}}\)

Vậy a = b = 1

Khách vãng lai đã xóa
lethua
25 tháng 8 2021 lúc 9:47

x^4+ax^2+1
= x^4+2x^2+1+ax^2-2x^2
=(x^2+1)^2-x^2+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+x^2(a-1)
= (x^2+x+1)(x^2-x+1)+(a-1)(x^2+x+1) -(a-1)(x-1). 
để x^4+ax^2+1 chia hết cho x^2+x+1 
thì số dư =0 
<=> (a-1)(x-1) =0 
<=> a=1

Khách vãng lai đã xóa