Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thế Minh
Xem chi tiết
Phúc
14 tháng 12 2017 lúc 12:44

đề sai khỏi làm

Phạm Thanh Bình
23 tháng 12 2017 lúc 8:07

🤣🤣🤣

OoO hoang OoO
Xem chi tiết
Thanh Tùng DZ
3 tháng 6 2019 lúc 19:23

Ta có : \(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)

\(8^y+8^y+8^2\ge3\sqrt[3]{8^y.8^y.8^2}=12.4^y\)

\(8^z+8^z+8^2\ge3\sqrt[3]{8^z.8^z.8^2}=12.4^z\)

\(8^x+8^y+8^z\ge3\sqrt[3]{8^x.8^y.8^z}=3\sqrt[3]{8^6}=192\)

Cộng các vế , ta được :

\(3\left(8^x+8^y+8^z+64\right)\ge3\left(4^{x+1}+4^{y+1}+4^{z+1}+64\right)\)

hay \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)

titanic
Xem chi tiết
Phùng Minh Quân
11 tháng 12 2019 lúc 18:25

Đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\)\(\left(a,b,c>0\right)\)\(\Rightarrow\)\(a+b+c\ge3\sqrt[3]{2^{x+y+z}}=3\sqrt[3]{2^6}=12\)

bđt đề bài \(\Leftrightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)\)

Dễ dàng chứng minh bđt trên với bđt phụ \(a^3-4a^2\ge16a-64\)\(\Leftrightarrow\)\(\left(a-4\right)^2\left(a+4\right)\ge0\) luon dung 

\(\Rightarrow\)\(a^3+b^3+c^3\ge4\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)-192\ge4\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(x=y=z=2\)

Khách vãng lai đã xóa
Kiệt Nguyễn
Xem chi tiết
Thanh Tùng DZ
28 tháng 12 2019 lúc 21:06

vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu

giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)

Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)

\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)

Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1

Khách vãng lai đã xóa
nguyen thu phuong
Xem chi tiết
Thắng Nguyễn
1 tháng 6 2017 lúc 11:55

tìm trc khi hỏi 

[Toán 9] Phương trình vô tỉ - Bất đẳng thức - Số nguyên tố | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam

Cho các số thực x,y,z thỏa mãn: Chứng minh rằng: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

CM: $x^2+y^4+z^6\leqslant 2$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Chứng minh rằng: $ x^2+y^4+z^6 \le 2 $ - Bất đẳng thức và cực trị - Diễn đàn Toán học

Huân Đỗ Quang
Xem chi tiết
Trịnh Xuân Diện
Xem chi tiết
Tiến Dũng Trương
29 tháng 11 2016 lúc 22:44

Học hằng đẳng thức ni chưa a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

Nếu rồi thì giải như sau

x+y+z=0 suy ra x3+y3+z3=3xyz

tương tự \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=3\(\frac{1}{xyz}\)

M=\(\frac{3x^2y^2z^2}{3xyz}\);M=xyz

Đề cho \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 làm chi vậy bạn

Nguyễn Trung Nghĩa
Xem chi tiết
Trịnh Phan Hoàng Anh
15 tháng 4 2019 lúc 16:44

−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)

Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)

x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)

ta sẽ chứng minh:

x2+y2+z2≤2 ta có: 

x2+y2+z2≤x2+y2+z2+2xy(từ (2) )

⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1)  )

⇒x2+y4+z6≤2(đpcm)(từ (3) )

(kết luận)

Nam Mô Ki Ni
7 tháng 2 2020 lúc 13:22

gsddddddddddddddddddd

Khách vãng lai đã xóa
dbrby
Xem chi tiết
The Neil
16 tháng 8 2019 lúc 22:46

\(\frac{1}{x^4}+\frac{1}{y^4}=\frac{x^2}{x^6}+\frac{1}{y^4}\ge\frac{\left(x+1\right)^2}{x^6+y^4}\ge\frac{4x}{x^6+y^4}\)

tương tự

\(\frac{1}{y^4}+\frac{1}{z^4}\ge\frac{4y}{y^6+z^4}\);

\(\frac{1}{z^4}+\frac{1}{x^4}\ge\frac{4z}{z^6+x^4}\);

cộng vế với vế => đpcm

Dấu "=" xảy ra <=> x=y=z=1

Nguyễn Trần Hoàng
16 tháng 8 2019 lúc 21:02

Cô si

Lê Anh Duy
10 tháng 2 2020 lúc 12:19

Cách khác:

\(x^6+y^4\ge2\sqrt{x^6y^4}=2x^3y^2\)

\(\Rightarrow\frac{2}{x^6+y^4}\le\frac{1}{x^2y^2}\)

CMTT , ta có VT \(\le\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\)

Bổ đề: \(a^2+b^2+c^2\ge ab+bc+ca\) ( luôn đúng)

\(\Rightarrow\frac{1}{x^2y^2}+\frac{1}{y^2z^2}+\frac{1}{z^2x^2}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)

ĐPCM

Dấu " =" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
Thượng Thần Bạch Thiển
Xem chi tiết