Vecto n → nào dưới đây là 1 vecto pháp tuyến của mặt phẳng P : x 2 + y - 1 + z 3 = 1 4 ?
trong mặt phẳng oxy vecto nào dưới đây là một vecto pháp tuyến của đường thẳng d {x=-2-t;y=-1+2t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có vecto pháp tuyến là n → = 2 ; − 1 ; 1 . Vecto nào sau đây cũng là vecto pháp tuyến của (P)?
A. (4;-2;2)
B. (-4;2;3)
C. (4;2;-2)
D. (-2;1;1)
Đáp án A
( 4 ; − 2 ; 2 ) = 2 ( 2 ; − 1 ; 1 ) ⇒ ( 4 ; − 2 ; 2 ) là một VTPT của (P)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-3z+1=0. Vecto nào dưới đây là 1 vecto pháp tuyến mặt phẳng (P)
A. (2;2;1)
B. (2;-3;1)
C. (2;2;-3)
D. (2;-2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+y+2=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (2;0;1)
B. (2;1;0)
C. (2;1;2)
D. (2;-1;0)
Trong không gian (Oxyz) một mặt phẳng α : 2x-3z+2=0. Vecto nào dưới đây là vectơ pháp tuyến của mặt phẳng
A. (2;-3;2)
B. (2;3;2)
C. (2;0;-3)
D. (2;2;-3)
Trong không gian (Oxyz) , cho vectơ n → (0;1;1). Mặt phẳng nào trong các mặt phẳng được cho bởi các phương trình dưới đây nhận vecto n làm vecto pháp tuyến ?
A. x=0
B. y+z=0
D. z=0
D. x+y=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2z+z+2017=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (1;-1;4)
B. (1;-2;2)
C. (2;2;1)
D. (-2;2;-1)
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A 2 ; − 1 ; 1 , B 1 ; 2 ; 0 và C 3 ; 2 ; − 1 . Vecto nào dưới đây là một vecto pháp tuyến của mặt phẳng (ABC)?
A. n 1 → = 1 ; 1 ; 2
B. n 2 → = 1 ; - 1 ; 2
C. n 3 → = 1 ; 5 ; - 2
D. n 4 → = 2 ; 1 ; 1
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) song song với hai đường thẳng d 1 : x - 2 2 = y + 1 - 3 = z 4 , d 2 : x = 2 + t y = 3 + 2 t z = 1 - t . Vecto nào sau đây là vecto pháp tuyến của mặt phẳng (P) ?
A. n ⇀ = ( 5 ; - 6 ; 7 )
B. n ⇀ = ( - 5 ; - 6 ; 7 )
C. n ⇀ = ( - 5 ; 6 ; - 7 )
D. n ⇀ = ( - 5 ; 6 ; 7 )