Cho hàm số y = f(x) xác định và liên tục trên tập R và có đạo hàm f ' x = x 3 x + 1 2 2 - x . Hàm số đã cho có bao nhiêu điểm cực trị?
A. 0
B. 3
C. 1
D. 2
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y= f(x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’( x) và hàm số y= f’( x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên R
B. Hàm số y= f( x) nghịch biến trên R.
C. Hàm số y= f( x) chỉ nghịch biến trên khoảng .
D. Hàm số y= f( x) nghịch biến trên khoảng (0; + ∞) .
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Cho hàm số y = f(x) liên tục và xác định trên R. Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số f( x) đồng biến trên R.
B. Hàm số f( x) nghịch biến trên R.
C. Hàm số f(x) chỉ nghịch biến trên khoảng (0; 1) .
D. Hàm số f(x) đồng biến trên khoảng (0; + ∞) .
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x) +x .
A. Không có giá trị
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f'(x). Biết rằng đồ thị hàm số f'(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x.
A. Không có giá trị
Hàm số y = f ( x ) xác định và liên tục trên R có đạo hàm f ' ( x ) = x - 1 3 x - 2 2 x 3 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số y = f ( x ) là
A. 3
B. 1
C. 0
D. 2
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thoả mãn f'(x) = (1 - x)(x+2)g(x) + 2023 với g(x) < 0, ∀x∈R. Hàm số y = f(1-x) + 2023x + 2024 nghịch biến trên khoảng nào?
Cho hàm số y= f( x) có đạo hàm f’(x) xác định, liên tục trên R và f’( x) có đồ thị như hình vẽ bên. Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên ( 1; + ∞)
B. Hàm số đồng biến trên (-∞;-1) và (3; + ∞)
C. Hàm số nghịch biến trên (- ∞; -1)
D. Hàm số đồng biến trên
Chọn B
Trên khoảng và đồ thị hàm số f’( x) nằm phía trên trục hoành.
=> Trên khoảng ( -∞; -1) và ( 3; + ∞) thì f’( x) > 0.
=> Hàm số đồng biến trên khoảng ( -∞; -1) và ( 3; + ∞)
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thỏa mãn f ' ( x ) = ( 1 - x ) ( x + 2 ) g ( x ) + 2018 với g ( x ) < 0 , ∀ x ∈ R . Hàm số y = f ( 1 - x ) + 2018 x + 2019 nghịch biến trên khoảng nào dưới đây?
A . ( 1 ; + ∞ ) .
B . ( 0 ; 3 ) .
C . ( - ∞ ; 3 ) .
D . ( 4 ; + ∞ ) .