Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Viết Hân
Xem chi tiết
123654
9 tháng 5 2016 lúc 17:12

Ta có: \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]=\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\)

Mà \(\left[\frac{n}{2}\right]+\left[\frac{n}{3}\right]+\left[\frac{n}{4}\right]\) có kết quả là số nguyên

Nên \(\frac{n}{2}+\frac{n}{3}+\frac{n}{4}\) cũng phải có kết quả là số nguyên. Hay \(\frac{n}{2};\frac{n}{3};\frac{n}{4}\) đều là số nguyên.

=> n chia hết cho cả 2;3 và 4 

Vậy n sẽ là Bội của 2;3;4 hay n = 24k (k \(\in\) N*, k < 84) (BCNN(2;3;4)=24)

\(n\in\left\{24;48;72;96;120;...;1992\right\}\) Không có số 0 vì số 0 không phải là số nguyên dương.

Thái Ngọc Trâm Anh
Xem chi tiết
Tran Thu
Xem chi tiết
Dang Tung
25 tháng 12 2023 lúc 16:50

a) A=4n-5/n+2 = 4(n+2)-13/n+2

= 4 - 13/n+2

Để A có giá trị nguyên

=> 13/n+2 đạt giá trị nguyên

=> 13 chia hết cho (n+2)

=> n+2 thuộc Ư(13)={±1;±13}

Do n là số nguyên dương => n+2 ≥ 3 và n+2 nguyên

Hay n+2 =13

=> n=11

Vậy n=11 là giá trị nguyên dương thỏa mãn đề.

Nguyễn Thị Thương Hoài
25 tháng 12 2023 lúc 16:52

A = \(\dfrac{4n-5}{n+2}\)  (đk n \(\ne\) - 2; n \(\in\) Z)

\(\in\) Z ⇔ 4n - 5 ⋮ n + 2

      4n + 8 - 13 ⋮ n + 2

  4.(n + 2) - 13 ⋮ n + 2

                   13 ⋮ n + 2

n + 2 \(\in\) Ư(13) = {-13; -1; 1; 13}

Lập bảng ta có:

n + 2  -13 -1 1 13
n -15 -3 -1 11

Theo bảng trên ta có: n \(\in\) {-15; -3; -1; 11}

Vì n nguyên dương nên n = 11

 

 

 

Dang Tung
25 tháng 12 2023 lúc 16:55

B = 7n+3/n-3 = 7(n-3)+24/n-3

= 7 + 24/n-3

Để B đạt giá trị nguyên

=> 24/n-3 cũng phải đạt giá trị nguyên

=> 24 chia hết cho (n-3)

=> n-3 thuộc Ư(24)={±1;±2;±3;±4;±6;±8;±12;±24}

Do n nguyên dương => n-3≥-2 và n-3 nguyên

Hay n-3 thuộc {-2;-1;1;2;3;4;6;8;12;24}

=> n thuộc {1;2;4;5;6;7;9;11;15;27}

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 4 2018 lúc 15:56

Chọn đáp án A

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 2 2018 lúc 7:47

Đáp án B

Ta có

Vậy giá trị nguyên n lớn nhất thỏa mãn là n = 4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 8 2017 lúc 16:43

Đáp án B

Ta có

n 360 < 3 480 ⇔ ln n 360 < ln 3 480 ⇔ 360. ln n < 480. ln 3 ⇔ ln n < 4 3 . ln 3 ⇔ n < e 4 3 ln 3 ≈ 4 , 326.  

Vậy giá trị nguyên n lớn nhất thỏa mãn là  n = 4.

Nguyễn Nữ Minh Anh
Xem chi tiết
Trần Đỗ  Đạt
24 tháng 2 2021 lúc 16:13

A = 3 phần n trừ 3

Khách vãng lai đã xóa
Trương Thị Trúc Đào
28 tháng 2 2021 lúc 8:40

A=3 phần n trừ 3 nhá em

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 10:18

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)

Khách vãng lai đã xóa
Nguyễn Tuệ Minh Thu
Xem chi tiết