Cho P : x + y - z - 1 = 0 và Q : - 2 x + z + 4 = 0 và A - 1 ; 1 ; 3 . Gọi α là mặt phẳng qua A, α ⊥ P , α ⊥ Q . Tìm một vectơ pháp tuyến n → của α .
Cho x khác 0, y khác 0, z khác 0 và\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
và x = y + z. CMR: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đề bài có vấn đề bạn nhé !
Đẳng thức <=>1/x+1/y+1/z=1/x-1/y-1/z
<=>2(1/y+1/z)=0
<=> (y+z)/yz=0
<=> y+z=0 do yz khác 0 (đk)
<=> x=0 do x=y+z
đến đây thì vô lí nhé do x khác 0 (đk)
CHo x khác 0 , y khác 0 và z khác 0 , \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\) = 1 và x = y + z .
CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) = 1
Đề sai nhá đáng nẽ là ; CMR : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Vì \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
Bình phương cả hai vế ta có : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(-\frac{1}{xy}+-\frac{1}{xz}+\frac{1}{yz}\right)=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\frac{x-y-z}{zyz}=1\)
Vì x = y + z => x - y - z = 0
Nên : \(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+0=1\)
Vậy \(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)(đpcm)
Nếu đề đúng như you nói : \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)thì tui có another way :
\(\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}+\frac{2}{yz}-\frac{2}{xz}=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{x}\left(\frac{1}{y}+\frac{1}{z}\right)+\frac{2}{yz}=1\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{x}\cdot\frac{\left(y+z\right)}{yz}+2yz=1\)
Mà x = y+z nên \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\left(đpcm\right)\)
Cho x,y,z khác 0 và 1/x+1/y+1/z=0. Tính giá trị của biểu thức Q= x+y/z + y+x/x + z+x/y
Cho x,y,z\(\ne\)0 và x-y-z=0
Tính: B=(1-\(\frac{z}{x}\)).(1-\(\frac{x}{y}\)).(1+\(\frac{y}{z}\))
Vì x-y-z = 0 => x = z + y ; y = x - z ; -z = y - x
Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z+y}{z}\)
\(=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)
Cho x, y, z không bằng 0 và x - y - z = 0. Tính giá trị biểu thức:
B=(1 - \(\frac{z}{x}\) ) (1 - \(\frac{x}{y}\) ) (1 + \(\frac{y}{z}\) )
\(x-y-z=0\)
nên \(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)
\(B=\dfrac{x-z}{x}\cdot\dfrac{y-x}{y}\cdot\dfrac{z+y}{z}=\dfrac{y}{x}\cdot\dfrac{-z}{y}\cdot\dfrac{x}{z}=-1\)
Cho 3 số x,y,z khác 0 và x+y+z=0
Tính giá trị biểu thức biết (\(\frac{x}{y}\)+1)(\(\frac{y}{z}\)+1)(\(\frac{z}{x}\)+1)
Ta có: x+y+z=0
Suy ra: x+y=-z; y+z=-x; z+x=-y
ta có: \(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
\(=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}\)
\(=-1\)
Cho x>0; y>0; z>0 và\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\).
Chứng minh rằng \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\).
Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)
Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)
\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)
=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)
Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)
(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :
y+z−x/x=z+x−y/y=x+y−z/z
Tính giá trị biểu thức :
B=(1+x/y).(1+y/z).(1+z/x)
Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x + y + z = 0
=> x + y = - z
=> z + y = - x
=> z + x = - y
Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)
Nếu x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)
Vậy nếu x + y + z = 0 B = - 1
nếu x + y + z \(\ne\)0 thì B = 8
chỉ có lm thì mới có ăn
cho x+y+z=0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) rút gọn:
\(M=\frac{x^6+y^6+z^6}{x^3+y^3+z^3}\)
Học hằng đẳng thức ni chưa a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
Nếu rồi thì giải như sau
x+y+z=0 suy ra x3+y3+z3=3xyz
tương tự \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=3\(\frac{1}{xyz}\)
M=\(\frac{3x^2y^2z^2}{3xyz}\);M=xyz
Đề cho \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)=0 làm chi vậy bạn
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6