Cho 3 số a,b,c thỏa mãn: a+b+c=0. Chứng minh rằng: ab+bc+ca nhỏ hơn hoặc bằng 0.
Cho a, b, c >0 thỏa mãn a+b+c =3
Chứng minh rằng: ( a/ 1+b^2) + (b/ 1+ c^2) + ( c/ 1+a^2) lớn hơn hoặc bằng 3/2
Áp dụng bđt Cauchy:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự:
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)
Cộng theo vế: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ac\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{3}{2}=\frac{3}{2}\)\("="\Leftrightarrow a=b=c=1\)
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Cho các số nguyên a; b; c thỏa mãn: ab(a - b) + bc(b - c) + ca(c - a) = a + b + c. Chứng minh rằng a + b + c chia hết cho 27
Cho 3 số a;b;c sao cho 0 lớn hơn hoặc bằng a lớn hơn hoặc bằng b lớn hơn hoặc bằng c lớn hơn hoặc bằng 1
Chứng minh : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\) nhỏ hơn hoặc bằng 2
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Chứng minh rằng nếu a,b,c là 3 số thỏa mãn a+b=c thì ta có tổng thức: a2+b2+c2+2(ab-ac-bc)=0
Từ a+b=c Ta được a+b-c=0
Do đó:\(\left(a+b-c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)
Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế
Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)
\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)
\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)
\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)
Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)
\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)
\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)
Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi
GOOD LUCK
Ở trên là bài toán đảo và muốn giải bài của bạn thì bạn chỉ cần đảo ngược nó lại (Đừng lo , mình ko chép mẫu đâu)
Cho a,b,c là các số nguyên khác 0 thỏa mãn:
bc = a2 và b+c= -2|-a|-3
Chứng minh rằng: b,c là 2 số nguyên âm
HSG Phú Thọ 2016
Cho các số dương a,b,c thỏa mãn \(ab+bc+ca=1\). Chứng minh rằng :
\(\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=0\)
Ta có 1+c2=ab+bc+ca+c2=(a+c)(b+c)
Tương tự 1+a2=(a+b)(a+c)
1+b2=(a+b)(b+c)
Suy ra \(\frac{a-b}{1+c^2}=\frac{a-b}{\left(a+c\right)\left(b+c\right)}=\frac{1}{c+b}-\frac{1}{c+a}\)
\(\frac{b-c}{1+a^2}=\frac{b-c}{\left(a+b\right)\left(a+c\right)}=\frac{1}{a+c}-\frac{1}{a+b}\)
\(\frac{c-a}{1+b^2}=\frac{c-a}{\left(a+b\right)\left(b+c\right)}=\frac{1}{a+b}-\frac{1}{b+c}\)
\(\Rightarrow\frac{a-b}{1+c^2}+\frac{b-c}{1+a^2}+\frac{c-a}{1+b^2}=\frac{1}{c+b}-\frac{1}{c+a}+\frac{1}{a+c}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}=0\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng:
\(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge\) 2
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt Cô Si: \(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
Tương tự,cộng theo vế và rút gọn =>đpcm
\(\frac{a+bc}{b+c}+\frac{b+ac}{c+a}+\frac{c+ab}{a+b}\)
\(=\frac{a\left(a+b+c\right)+bc}{b+c}+\frac{b\left(a+b+c\right)+ac}{a+c}+\frac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}+\frac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Áp dụng bđt CÔ si
\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{a+c}\ge2\left(a+b\right)\)
.............