Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z = 1 4 - 3 i là
Cho số phức z = ( 2 - 3 i ) ( 4 - i ) 3 + 2 i . Tìm tọa độ điểm biểu diễn của số phức z trên mặt phẳng Oxy
A. .
B. .
C. .
D. .
Biết T(4;-3) là điểm biểu diễn số phức z trên mặt phẳng tọa độ phức Oxy. Khi đó điểm nào sau đây biểu diễn số phức w = z − z ¯
A. M(1;3)
B. N(-1;-3)
C. P(-1;3)
D. Q(1;-3)
Biết T(4;-3) là điểm biểu diễn số phức z trên mặt phẳng tọa độ phức Oxy. Khi đó điểm nào sau đây biểu diễn số phức w = z - z
Biết T(4;-3) là điểm biểu diễn số phức z trên mặt phẳng tọa độ Oxy. Khi đó điểm nào sau đây biểu diễn số phức w = z − z ¯
A. M(1;3)
B. N(-1;-3)
C. P(-1;3)
D. Q(1;-3)
Cho số phức z thỏa mãn iz + 2 - i = 0. Khoảng cách từ điểm biểu diễn của z trên mặt phẳng tọa độ Oxy đến điểm M(3;-4) là:
A. 2 5
B. 13
C. 2 10
D. 2 2
Cho số phức z thỏa mãn: |z - 1 + i| = 2. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng.
B. Một đường Parabol.
C. Một đường tròn có bán kính bằng 2.
D. Một đường tròn có bán kính bằng 4.
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z1 được biểu diễn bởi điểm A(1;-1).
Em có: |z - 1 + i| = 2 => MA = 2
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình:
Cách 2: Đặt . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
Vậ tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
Cho số phức z thỏa mãn: z − 1 + i = 2 . Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức z là:
A. Một đường thẳng
B. Một đường Parabol
C. Một đường tròn có bán kính bằng 2
D. Một đường tròn có bán kính bằng 4
Đáp án C
Cách 1: Số phức z được biểu diễn bởi điểm M(x;y).
Số phức z 1 được biểu diễn bởi điểm A(1;-1).
Em có: z − 1 + i = 2 ⇒ MA = 2 .
Vậy tập hợp điểm M là đường tròn tâm A(1;-1), bán kính R = 2 và có phương trình: x − 1 2 + y + 1 2 = 4 .
Cách 2: Đặt z = x + yi , x ; y ∈ ℝ . Số phức z được biểu diễn bởi điểm M(x;y).
Em có:
z − 1 + i = 2 ⇔ x − 1 + y + 1 i = 2 ⇔ x − 1 2 + y + 1 2 = 2 ⇔ x − 1 2 + y + 1 2 = 4
Vậy tập hợp điểm M là đường tròn tâm I(1;-1), bán kính R = 2 và có phương trình:
x − 1 2 + y + 1 2 = 4 .
Cho số phức z=x+iy (x,y∈R) thỏa mãn 2 z + ( 1 + i - i 3 ) z = x + 2 + 3 i . Trên mặt phẳng tọa độ, điểm biểu diễn số phức z có tọa độ là
A. (2;-3).
B. (-1;2).
C. (2;1).
D. (2;-1).
Cho số phức z = 1 − 2 i . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức liên hợp của số phức z?
A. M 1 1 ; 2
B. M 2 - 1 ; 2
C. M 3 - 1 ; - 2
D. M 4 1 ; - 2
Cho số phức z = 1 − 2 i . Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức liên hợp của số phức z?
A. M 1 1 ; 2
B. M 2 − 1 ; 2
C. M 3 − 1 ; − 2
D. M 4 1 ; − 2
Đáp án A.
Số phức liên hợp của z = 1 − 2 i là z ¯ = 1 + 2 i .
Do đó M 1 1 ; 2 là điểm biểu diễn của z ¯ .