Cho số phức z có z = 1 . Tìm giá trị lớn nhất của biểu thức P = z 2 - z + z 2 + z + 1 .
A. 13 4
B. 3
C. 3
D. 11 4
Cho số phức z thỏa mãn z = 1 . Tìm giá trị lớn nhất của biểu thức P = 1 + z + 3 1 - z
A. 3 15
B. 6 5
C. 20
D. 2 20
Cho số phức z thỏa mãn | z |=1. Tìm giá trị lớn nhất của biểu thức P = 1 + z + 3 1 - z
A. P = 2 10
B. P = 6 5
C. P = 3 15
D. P = 2 5
Cho số phức z thỏa mãn z = 1 . Tìm giá trị lớn nhất của biểu thức P = 1 + z + 3 1 - z
A. 2 10
B. 6 5
C. 3 15
D. 2 5
Cho số phức z thỏa mãn z + 1 = 3 . Tìm giá trị lớn nhất của biểu thức T=|z+i|+|z+2-i|
A. max T=2.
B. m a x T = 2 5
C. m a x T = 5
D. m a x T = 2 2
Cho số phức z thỏa mãn điều kiện z - 1 = 2 . Tìm giá trị lớn nhất của biểu thức T = z + i + z - 2 - i
Tập hợp các điểm z thỏa mãn điều kiện z - 1 = 2 là đường tròn (C) tâm I(1;0) bán kính R = 2
Gọi M là điểm biểu diễn cho số phức z, A(0,-1) là điểm biểu diễn cho số phức -i, B(2;1)là điểm biểu diễn cho số phức 2+i
Đáp án D
Cho số phức z thỏa mãn điều kiện z - 1 = 2 .
Tìm giá trị lớn nhất của biểu thức T = z + i + z - 2 - i
A. maxT= 8 2
B. maxT=8
C. maxT= 4 2
D. maxT=4
Đáp án D
Phương pháp: Đưa biểu thức T về dạng biểu thức vector bằng cách tìm các vecto biểu diễn cho các số phức.
Cách giải:
Tập hợp các điểm z thỏa mãn điều kiện là đường tròn (C) tâm I(1;0) bán kính R= 2
Gọi M là điểm biểu diễn cho số phức z, A(0;-1) là điểm biểu diễn cho số phức -i, B(2;1) là điểm biểu diễn cho số phức 2+i
Dễ thấy A,B ∈ C và
AB là đường kính của đường tròn (C)
vuông tại M
Đặt
Xét hàm số trên ta có:
Vậy maxT=4
Cho số phức z thỏa mãn z ≥ 2 . Tìm tích của giá trị lớn nhất và nhỏ nhất của biểu thức P = z + i z
A. 3 4
B. 1
C. 2
D. 2 3
Số phức z thỏa mãn z - 2 i z - 2 là số ảo. Tìm giá trị lớn nhất của biểu thức P = z - 1 + z - i
A. 5
B. 5 2
C. 2 5
D. 3 5
Đặt z = a + bi với a , b ∈ R
Khi đó
z - 2 i z - 2 = a + b - 2 i a - 2 + b i = a + b - 2 i a - 2 - b i a - 2 2 + b 2 = a a - 2 + b b - 2 a - 2 2 + b 2 + a - 2 b - 2 - a b a - 2 2 + b 2
z - 2 i z - 2 là số ảo khi và chỉ khi
a a - 2 + b b - 2 a - 2 2 + b 2 = 0 ⇔ a 2 + b 2 = 2 a + b a - 2 2 + b 2 ≠ 0
Ta có
P = z - 1 + z - i = a - 1 + b i + a + b - 1 i = a - 1 2 + b + a 2 + b - 1 2 = a 2 + b 2 - 2 a + 1 + a 2 + b 2 - 2 b + 1 = 2 a + b - 2 a + 1 + 1 a + b - 2 a + 1 = 1 + 2 b + 1 + 2
Áp dụng bất đẳng thức Cauchy ta có: 2 a + b = a 2 + b 2 ≥ 1 2 a + b 2
Suy ra a + b ≤ 4
Do đó P 2 ≤ 2 2 + 2 a + b ≤ 20 ⇔ P ≤ 2 5
Dấu “=” xảy ra khi và chỉ khi a = b = 2
Vậy maxP = 2 5 đạt được khi z = 2 + 2i
Đáp án C
Cho số phức z thỏa mãn z = 1 Tìm giá trị lớn nhất của biểu thức T = z + 1 + 2 z - 1