Cho hàm số y = f(x) liên tục và có đạo hàm trên R thỏa mãn f 2 = − 2 ; 0 2 f x d x = 1. Tính tích phân I = 0 4 f ' x d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f x . f ' x = f 2 x - x , ∀ x ∈ R và f(2)=1 Tích phân ∫ 0 2 f 2 x d x bằng
A. 3 2
B. 4 3
C. 2
D. 4
Cho hàm số y=f(x) liên tục và có đạo hàm trên R thỏa mãn f(2)=-2, ∫ 0 2 f x d x = 1. Tính tích phân I = ∫ 0 4 f ' x d x .
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số y =f(x) liên tục và có đạo hàm trên R thỏa mãn f(2) = -2; ∫ 0 2 f ( x ) d x = 1 Tính tích phân ∫ 0 4 f ' ( x ) d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số y=f(x) có đạo hàm liên tục trên R thỏa mãn x f ( x ) . f ' ( x ) = f 2 ( x ) - x , ∀ x ∈ ℝ và f(2)=1 .Tích phân bằng
A. 3 2
B. 4 3
C. 2
D. 4
Chọn đáp án C.
Lấy tích phân hai vế trên đoạn [0;2] có
Tích phân từng phần có
Cho hàm số y = f(x) liên tục và có đạo hàm trên R thỏa mãn f(2) = -2; ∫ 0 2 f ( x ) d x = 1 Tính tích phân I = ∫ 0 4 f ' ( x ) d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số f(x) xác định và liên tục trên R và có đạo hàm f'(x) thỏa mãn f ' ( x ) = ( 1 - x ) ( x + 2 ) g ( x ) + 2018 với g ( x ) < 0 , ∀ x ∈ R . Hàm số y = f ( 1 - x ) + 2018 x + 2019 nghịch biến trên khoảng nào dưới đây?
A . ( 1 ; + ∞ ) .
B . ( 0 ; 3 ) .
C . ( - ∞ ; 3 ) .
D . ( 4 ; + ∞ ) .
Cho hàm số y=f(x) liên tục trên R có đạo hàm cấp 3 với f’’’(x)=0 và thỏa mãn f ( x ) ' 2018 1 - f ' ' ( x ) = 2 x ( x + 1 ) 2 ( x - 2018 ) 2019 : f ' ' ( x ) , ∀ x ∈ R Hàm số g ( x ) = f ' ( x ) 2019 1 - f ' ' ( x ) có bao nhiêu điểm cực trị?
A. 1
B.2
C.3
D. 4
Cho hàm số y= f(x) có đạo hàm liên tục trên R, thỏa mãn 2 f ( 2 x ) + f ( 1 - 2 x ) = 12 x 3 . Tìm phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm có hoành độ x = 1
A.
B.
C.
D.
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(0) = 3 và f x + f 2 - x = x 2 - 2 x + 2 . Tích phân ∫ 0 2 x f ' x d x bằng
A. .
B. .
C. .
D.
Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãn 2f(5-3x)+3f(x+1)=x^2+4x+5. Viết phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ bằng 2
Thay \(x=1\Rightarrow2f\left(2\right)+3f\left(2\right)=10\Rightarrow f\left(2\right)=5\)
Đạo hàm 2 vế giả thiết:
\(-6f'\left(5-3x\right)+3f'\left(x+1\right)=2x+4\)
Thay \(x=1\)
\(-6f'\left(2\right)+3f'\left(2\right)=6\Rightarrow f'\left(2\right)=-2\)
Phương trình tiếp tuyến:
\(y=-2\left(x-2\right)+5=-2x+9\)