Phương trình 2018 2 2000 = 1009 1000 x có bao nhiêu nghiệm thực?
A. 0
B. 1
C. 2
D. 3
giải phương trình\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
Ta có:
\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
\(\Leftrightarrow x-\sqrt{\left(2018x-2018\right)}+x-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow2x-\sqrt{\left(2018x-2018\right)}-\sqrt{\left(1009x-1009\right)}=2x\)
\(\Leftrightarrow\sqrt{\left(2018x\right)-2018}+\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow\sqrt{\left(2018x-2018\right)}=\sqrt{\left(1009x-1009\right)}=0\)
\(\Leftrightarrow2018x-2018=1009x-1009=0\Leftrightarrow x=1\)
cho x^4/a+y^4/b=(x^2+y^2)/(a+b), và x^2+y^2=1 cmr x^2018/a^1009 y^2018/b^1009=2/(a b)^1009
y3-9y2+29y-19=0=x3-9x2+29x-47
tính x+y
b) a2018+b2018+c2018=a1009b1009+b1009c1009+c1009a1009
tính (a-b)2017+(b-c)2018+(c-a)2019
Thực hiện phép tính:
a,\(\left(\frac{9}{16}-\frac{5}{8}+\frac{3}{4}\right):\frac{11}{32}\)
b,\(\frac{1000}{1009}.\frac{-2018}{2019}+\frac{19}{2018}.\frac{-2018}{2019}+\frac{1}{2020}\)
\(a,=\left(\frac{9}{16}-\frac{10}{16}+\frac{12}{16}\right):\frac{11}{32}\)
\(=\frac{11}{16}:\frac{11}{32}\)
\(=\frac{11}{16}.\frac{32}{11}\)
\(=2\)
cho a^2018+b^2018+c^2018=a^1009b^1009+b^1009c^1009+c^1009a^1009
tính A=(a-b)^2019+(b-c)^2020+(c-a)^2020
Ta có a^2018 + b^2018 +c^2108 = a^1009b^1009 + b^1009c^1009 +c^1009a^1009
=> a^2018 + b^2018 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009 =0
=> 2( a^2018 +b^2108 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009) =0
=> [(a^1009)^2 -2a^1009b^1009 +(b^1009)^2] + [(b^1009)^2 -2b^1009c^1009 +(c^1009)^2] +[(c^1009)^2 -2c^1009a^1009 +(c^1009)^2] =0
=> (a^1009 -b^1009)^2 + (b^1009 -c^1009)^2 + (c^1009 -a^1009)^2 =0
Vì (a^1009 -b^1009)^2 , (b^1009-c^1009)^2 , (c^1009- a^1009)^2 >_0 ( với mọi a,b,c)
=> a^1009 -b^1009 =0 , b^1009-c^1009 =0 , c^1009-a^1009 =0
=> a=b=c=0
Thay vào A : A=0
Vậy A=0
So sánh : 2018 mũ 1009 và 2 x 2017 mũ 1009
2 x 2017 mũ 1009 lớn hơn vì 2017 mũ 1009 sẽ được thêm gấp đôi => sẽ lớn hơn
Cho x4/a+y4/b=1/a+b, x2+y2=1
Chứng minh: x2018/a1009+y2018/b1009=2/(a+b)1009
Ta có: \(x^2+y^2=1\Leftrightarrow\left(x^2+y^2\right)^2=1\) (1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right)ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1009}=\left(\frac{y^2}{b}\right)^{1009}=\left(\frac{1}{a+b}\right)^{1009}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}=\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}+\frac{1}{\left(a+b\right)^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\left(đpcm\right)\)
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=1\)và \(x^2+y^2=1\).CMR: \(\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\).
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{\left(a+b\right)}\) Dề ntn thế này mới chuẩn >:
Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) và \(^{x^2+y^2}\)=1 chứng minh rằng x^2018/a^1009 + y^2018/b^1009 = \(\frac{2}{\left(a+b\right)^{1009}}\)
Câu hỏi của Conan Kudo - Toán lớp 8 - Học toán với OnlineMath tham khảo
các bạn tham khảo nhé
a, Cho \(a^{2018}+b^{2018}+c^{2018}=\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Tính \(P=\left(a-b\right)^{2018}+\left(b-c\right)^{2018}+\left(c-a\right)^{2018}\)
b, Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)và \(\frac{2}{ab}-\frac{1}{c^2}=9\)
Tính \(P=\left(a+2b+c\right)^{2018}\)
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Mà đẳng thức trên xảy ra dấu =
\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)
Bài kia tí nghĩ nốt, khó v
Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)