Phân tích đa thức thành nhân tử : x^2 - 2xy + y^2 - z^2
Phân tích đa thức thành nhân tử : x^2 - 2xy + y^2 - z^2
x^2 - 2xy + y^2 - z^2
=(x-y)2-z2
=(x-y-z)(x-y+z)
Phân tích đa thức thành nhân tử
x^2 +y^z +z^2x +xy^2 +yz^2 +xz^2 +2xy^2
phân tích đa thức thành nhân tử
a/ 16x^4(x-y)-x+y
b/2x^3y -2xy^3-4xy^2-2xy
c/x(y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
Phân tích đa thức thành nhân tử
x^2y + y^2z + z^2x +xy^2 +yz^2 +xz^2 +2xy^2
Phân tích đa thức thành nhân tử
x2-2xy+y2-z2
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
Học tốt
\(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
ta nhóm \(\left(x^2-2xy+y^2\right)-z^2\)
=\(\left(x-y\right)^2-z^2\)
=\(\left(x-y+z\right)\left(x-y-z\right)K\)nha
\(k\)\(mình\)\(nha\)
Âu Cơ
phân tích đa thức thành nhân tử
\(x^2-y^2+z^2-2zt+2xy-t^2\)
Phân tích đa thức thành nhân tử
a.x^3+2x^2+x-xy^2
b.x^2-2xy+y^2-z^2
(Có x là nhân tử chung)
= x(x2 + 2xy + y2 – 9)
(Có x2 + 2xy + y2 là hằng đẳng thức)
= x[(x2 + 2xy + y2) – 9]
= x[(x + y)2 – 32]
(Xuất hiện hằng đẳng thức (3)]
= x(x + y – 3)(x + y + 3)
Hok tốt
Phần b đây nha
x2x2 – 2xy + y2y2 - z2z2
= (x2x2 – 2xy + y2y2) – z2z2
= (x−y)2x-y2 – z2z2
= (x – y + z)(x – y – z)
Hok tốt
TL
a) x³-2x²+x-xy²
=x(x²-2x+1-y²)
=x[(x-1)²-y²]
=x(x-1-y)(x-1+y)
K mik nha
HT
Bài 1: Phân tích đa thức sau thànBài 1: Phân tích đa thức sau thành nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16h nhân tử a) x 2 – xy + x – y b) x 2 + 5x + 6 c) 2xy - x 2 - y 2 +16
a) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-y\right)\)
b) \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(2xy-x^2-y^2+16\)
\(=16-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)