Cho số phức z = a + b i thỏa mãn z − i ≥ 3, z − 1 ≤ 5 . Tính z 1 , z 2 ∈ T .
A. P=8
B. P=-4
C. P=-8
D. P=4
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức thỏa mãn: z=a+bi, ( a , b ∈ R ) thỏa mãn: z ( 2 + i ) = z - 1 + i ( 2 z + 3 ) . Tính S = a + b
Cho số phức z=a+bi với a,b thuộc R thỏa mãn z-3+i=|z|i . Giá trị của a+b bằng
A. -1
B.7.
C.5.
D.12.
Cho số phức z = a + b i a , b ∈ R thỏa mãn z - 3 = z - 1 và z + 2 z - i là số thực. Tính a +b
A. -2
B. 0
C. 2
D. 4
Cho số phức z=a+bi thỏa mãn z - 1 = z - i và z - 3 i = z + i . Giá trị của a + b bằng:
Cho số phức z thỏa mãn z + ( 2 + i ) z ¯ = 3 + 5 i . Tính môđun của số phức z.
Cho số phức z = a + bi (a,b ∈ ℝ ) thỏa mãn z - 1 z - i v à z - 3 i z + i . Tính P = a + b.
A. P = 7
B. P = -1
C. P = 1
D. P = 2
Cho số phức z = a + b i ( a , b ∈ R ) thỏa mãn ( 1 + i ) z + 2 z ¯ = 3 + 2 i . Tính P = a + b
Cho số phức z=a+bi a , b ∈ R thỏa mãn ( 1 + i ) z + 2 z ¯ = 3 + 2 i . Tính P=a+b
Cho số phức z=1+i. Biết rằng tồn tại các số phức z 1 = a + 5 i , z 2 = b (trong đó a , b ∈ R , b > 1 ) thỏa mãn 3 | z - z 1 | = 3 | z - z 2 | = | z 1 - z 2 | . Tính b-a.
A. b - a = 5 3
B. b - a = 2 3
C. b - a = 4 3
D. b - a = 3 3