Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Hoàng
Xem chi tiết
Tran Le Khanh Linh
25 tháng 2 2020 lúc 9:21

Áp dụng BĐT
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{a}{b}+\frac{a}{c}\right)\ge9\)

Trong đó: a=xy; b=yz; c=zx

\(\Rightarrow\left(xy+yz+zx\right)\left(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge9\)(*)

Áp dụng BĐT Cô-si

\(x^2+y^2\ge2xy\left(x>0;y>0\right)\left(1\right)\)

\(y^2+z^2\ge2yz\left(y>0;z>0\right)\left(2\right)\)

\(z^2+x^2\ge2xz\left(x>0;z>0\right)\left(3\right)\)

Cộng từng vế của (1);(2);(3) ta được: \(x^2+y^2+z^2\ge xy+yz+zx\)(**)

Từ (*);(**)

\(\Rightarrow\left(x^2+y^2+z^2\right)\cdot A\ge\left(xy+yz+zx\right)\cdot A\ge9\)

\(\Rightarrow3A\ge9\)

\(\Rightarrow A\ge3\)

\(\Rightarrow MinA=3\Leftrightarrow x=y=z\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
25 tháng 2 2020 lúc 9:24

Quỳnh Mơn you nhìu nha ! May quá

Khách vãng lai đã xóa
Trí Tiên亗
25 tháng 2 2020 lúc 11:26

Áp dụng BĐT Svacxo cho 3 số dương ta được :

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{\left(1+1+1\right)^2}{xy+z+zx}\ge\frac{9}{x^2+y^2+z^2}=\frac{9}{3}=3\)

( Do BĐT : \(xy+yz+zx\ge x^2+y^2+z^2\) )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Nguyễn Thiện Minh
Xem chi tiết
Mai Thành Đạt
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Nguyễn Quang Đức
9 tháng 3 2020 lúc 16:49

Áp dụng BĐT Cosi cho 2 sô dương ta có: \(x^2+yz\ge2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx};z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được:

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Dấu "=" xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa
Trương Thanh Nhân
Xem chi tiết
Nguyễn Quang Đức
9 tháng 3 2020 lúc 16:43

Áp dụng BĐT Cosi cho 2 số dương ta có: \(x^2+yz\ge2\sqrt{x^2yz}=2x\sqrt{yz}\)

Tương tự: \(y^2+zx\ge2y\sqrt{zx},z^2+xy\ge2z\sqrt{xy}\)

Khi đó BĐT sẽ được chứng minh nếu ta chỉ ra được: 

\(\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{zx}}+\frac{1}{2z\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\Leftrightarrow\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\le\frac{x+y+z}{xyz}\Leftrightarrow\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le x+y+z\)

\(\Leftrightarrow\frac{1}{2}\left(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\right)\ge0\)(luôn đúng)

Vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y=z\)

Khách vãng lai đã xóa

Cách 2:

Ta chuẩn hóa xyz=1

BĐT viết lại là \(\frac{x}{x^3+1}+\frac{y}{y^3+1}+\frac{z}{z^3+1}\le\frac{1}{2}\left(x+y+z\right)\)

Ta sử dụng đánh giá

\(x-\frac{2x}{x^3+1}+\frac{3}{2}\ge\frac{9x^2}{2\left(x^2+x+1\right)}\)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(2x^4+3x^2+7x+3\right)}{2\left(x^3+1\right)\left(x^2+x+1\right)}\ge0\)

Do vậy ta cần c/m \(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\)

 ta có \(\left(x;y;z\right)\rightarrow\left(\frac{a^2}{bc};\frac{b^2}{ca};\frac{c^2}{ab}\right)\)

BĐT viết lại là \(\frac{a^4}{a^4+a^2bc+\left(bc\right)^2}+\frac{b^4}{b^4+b^2ca+\left(ca\right)^2}+\frac{c^4}{c^4+c^2ab+\left(ab\right)^2}\ge1\)

Theo bđt Cauchy-Schwarz ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+abc\left(a+b+c\right)+\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2}\)

Theo bđt AM-GM ta có

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^4+b^4+c^4+2\left(ab\right)^2+2\left(bc\right)^2+2\left(ca\right)^2}=1\)

Dấu "=" xảy ra khi a=b=c=> x=y=z

Khách vãng lai đã xóa
tth_new
9 tháng 3 2020 lúc 19:49

Cách 5:

\(VP-VT=\frac{1}{4xyz}\Sigma\frac{\left(xy+xz-2yz\right)^2+yz\left(y-z\right)^2}{\left(y+z\right)\left(x^2+yz\right)}\ge0\)

Khách vãng lai đã xóa
Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Khách vãng lai đã xóa
Ayakashi
Xem chi tiết
alibaba nguyễn
4 tháng 7 2017 lúc 10:54

\(A=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\)

\(\ge\frac{9}{3+x^2+y^2+z^2}\ge\frac{9}{3+3}=\frac{3}{2}\)

Ayakashi
4 tháng 7 2017 lúc 15:44

đoạn lớn hơn hoặc bằng cụm 9/ (3+xy+yz+zx) ấy, làm sao để có, mình ko hiểu lắm

alibaba nguyễn
4 tháng 7 2017 lúc 15:46

Cái đó là bất đẳng thức cosi swat đó

Thu Phương Nguyễn
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
25 tháng 4 2021 lúc 9:45

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

Khách vãng lai đã xóa
Le Dinh Quan
Xem chi tiết
tth_new
20 tháng 2 2020 lúc 7:12

Sửa đề VP là \(\frac{25}{3\sqrt[3]{4\left(xy+yz+zx\right)}}\).

Tham khảo:[TOPIC] ÔN THI BẤT ĐẲNG THỨC $\boxed{\text{THPT CHUYÊN VÀ HSG TỈNH}}$ NĂM HỌC 2019-2020 - Trang 2 - Bất đẳng thức và cực trị - Diễn đàn Toán học

Khách vãng lai đã xóa