Số giá trị nguyên của tham số m nằm trong khoảng (0.2020) để phương trình x - 1 - 2019 - x = 2020 - m có nghiệm là
A. 2020
B. 2021
C. 2019
D. 2018
1.Cho phương trình x2 +4x-m=0(1).Tìm tất cả các giá trị của tham số m để phương trinh (1) có đúng 1 nghiệm thuộc khoảng (-3,1)
2.Có bao nhiêu giá trị m nguyên trong nửa khoảng (0;2019] để phương trình |x2 -4|x|-5|-m có hai nghiệm phân biệt
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
Cho bất phương trình 2 log 3 2 ( 3 x ) - 2 m log 3 x + 3 log 2 x ( log 3 x + 2 - 2 m ) log 3 x ≤ 2 Biết rằng bất phương trình có đúng 74 nghiệm nguyên x ∈ 8 ; 2018 Giá trị nguyên của tham số m thỏa mãn bài toán nằm trong khoảng
A. (0;4)
B. (4;7)
C. (7;15)
D. (15;70)
Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (-1;7) để phương trình ( m - 1 ) x + ( m + 2 ) x ( x 2 + 1 ) = x 2 + 1 có nghiệm?
A. 6
B. 7
C. 1
D. 5
số giá trị nguyên của tham số m thuộc khoảng (-10;10) để bất phương trình x (x-2)-m|x-1| +2>0 nghiệm đúng với mọi x thuộc R
Có bao nhiêu giá trị nguyên thuộc khoảng (-9;9) của tham số m để bất phương trình 3 log x ≤ 2 log m x - x 2 - 1 - x 1 - x có nghiệm thực?
A. 6.
B. 7.
C. 10.
D. 11.
Có bao nhiêu giá trị nguyên thuộc khoảng (-9; 9) của tham số m để bất phương trình 3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x
có nghiệm thực?
A. 6
B. 7
C. 10
D. 11
Đáp án B.
Phương pháp:
Bất phương trình m ≥ f x , x ∈ D có nghiệm khi và chỉ khi m ≥ M i n D f x .
Cách giải:
ĐKXĐ: 0 < x < 1
3 log x ≤ 2 log m x − x 2 − 1 − x 1 − x ⇔ m x − x 2 − 1 − x 1 − x ≥ x x
⇔ m ≥ x x + 1 − x 1 − x x − x 2 , x ∈ 0 ; 1
Để bất phương trình đã cho có nghiệm thực thì m ≥ M i n 0 ; 1 f x , f x = x x + 1 − x 1 − x x − x 2
Xét
f x = x x + 1 − x 1 − x x − x 2 = x + 1 − x 1 − x x − 1 x x − 1 , x ∈ 0 ; 1
Đặt t = x + 1 − x , t ∈ 1 ; 2
Khi đó,
f x = x + 1 − x 1 − x 1 − x x 1 − x = t 1 − t 2 − 1 2 t 2 − 1 2 = t 3 − t 2 t 2 − 1 = 3 t − t 3 t 2 − 1 = g t
g ' t = − t 4 − 3 t 2 − 1 2 < 0 , ∀ t ∈ 1 ; 2
⇒ g t min = g 2 = 3 2 − 2 2 2 − 1 = 2 ⇒ M i n 0 ; 1 f x = 2 ⇒ m ≥ 2
Mà
m ∈ − 9 ; 9 ⇒ m ∈ 2 ; 3 ; 4 ; ... ; 8 ⇒
Có 7 giá trị thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m để phương trình cos3x – cos2x + m.cos x = 1 có đúng bảy nghiệm khác nhau thuộc khoảng - π 2 , 2 π
A. 3
B. 5
C. 7
D. 1
Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x 2 + x + 2 2 x + 1 > m có nghiệm trong khoảng - ∞ ; - 1
A. m ∈ - 3 ; + ∞
B. m ∈ [ - 3 ; + ∞ )
C. m ∈ - ∞ ; - 5 2
D. m ∈ ( - ∞ ; - 5 2 ]
Vậy để bpt có nghiệm trong - ∞ ; - 1 ⇒ m < - 5 2
Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x 2 + x + 2 2 x + 1 > m có nghiệm trong khoảng − ∞ ; − 1 .
A. m ∈ − 3 ; + ∞ .
B. m ∈ [ - 3 ; + ∞ ) .
C. m ∈ − ∞ ; − 5 2 .
D. m ∈ − ∞ ; - 5 2
Đáp án C
Vậy để bpt có nghiệm trong ( − ∞ ; − 1 ) ⇒ m < − 5 2