Cho ∆ABC vuông tại A, biết AC = 8cm, BC = 17cm. Giải tam giác vuông đó.
Cho tam giác ABC , biết BC = 17cm, AB = 8cm , AC = 15cm
a/ Chứng minh : tam giác ABC vuông tại A
b/ Kẻ AH \(\perp\)BC , Tính AH
1 các tam giác cho dưới đây có phải là tam giác vuông không? hãy chứng minh, nếu là tam giác vuông thì cho biết vuông tại đỉnh nào?
a) AB= 8cm; AC=17cm; BC=15cm
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
Cho tam giác ABC vuông tại A có AB=8cm,BC=17cm. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ tam giác ACD vuông tại D có CD=12cm.Độ dài cạnh AD bằng ?
cho tam giác abc vuông tại A . tính tỉ số lượng giác của góc c trong các trường hợp sau a/ AC=8cm bc=17cm b/ ab=12cm Ac=12cm c/ AB=a BC=a√5
c: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=2a\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)
Cho tam giác ABC vuông tại A có I là trung điểm của AC. Vẽ ID vuông góc với
cạnh huyền BC, (De BC).
a)Chứng minh AB2 = BD? _ CD2
b) Biết AB = 6cm; AC = 8cm. Em hãy giải tam giác vuông ABC
Nối B vs I. Xét tam giác BID vuông tại D, có:
BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:
DC2 = IC2 - ID2 (2).Từ (1) và (2) =>
=> BD2 - DC2
= BI2 - ID2 - IC2 + ID2
= BI2 - IC2
= BI2 - AI2 (vì AM=CM)
= AB2=> AB2 = BD2 - DC2 (đpcm)
a: \(BD^2-CD^2\)
\(=BI^2-ID^2-CI^2+ID^2=BI^2-CI^2=BI^2-AI^2=BA^2\)
b: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
sin B=AC/BC=4/5
=>góc B=53 độ
=>góc C=37 độ
cho tamgiac1 abc .Có ab=8cm ;bc=15cm;ac=17cm
a) chứng minh tam giác abc vuông góc
b) vẽ ai là phân giác góc a với i thuộc bc . Dùng ie vuông góc ac tại e .Chứng minh tam giác abe cân
c)ei cắt ab tại d .Chứng minh tam giác adc cân
1. Cho tam giác ABC vuông tại A. Dựng AD vuông góc BC tại D. Đường phân giác CE cắt AD tại F. Chứng minh\(\frac{FD}{FA}=\frac{EA}{EB}\)
2. Cho tam giác ABC vuông tại A, AC=8cm, BC=20cm. Đường trung trực của BC cắt đường thẳng AC tại D, cắt BC tại I. Tính CD.
3. Cho hình thang vuông ABCD (góc A=góc D=90 độ), AB=6cm,CD=12cm, AD=17cm. Trên cạnh AD đặt đoạn thẳng AE=8cm. Chứng minh EB vuông góc EC.
cho tam giác ABC vuông tại A. AB=8cm, BC=17cm, vẽ vào trong tam giác ABC 1 tam giác vuông cân DAB có cạch huyền là AB. gọi e là trung điểm của BC. tính DE
Gọi M là trung điểm AB
Xét △△ vuông ABC (ˆA=90o)(A^=90o). Theo định lí Pytago ta có
AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15
Xét △ABC△ABC có M là trung điểm AB, E là trung điểm BC \Rightarrow ME là đường trung bình của △ABC△ABC
\Rightarrow ME//AC,ME=12AC=7,5ME//AC,ME=12AC=7,5
Xét △ABD△ABD vuông tại D có DM là trung tuyến thuộc cạnh AB
⟹DM=12AB=4⟹DM=12AB=4
Do △ABD△ABD đều \Rightarrow trung tuyến DM còn là đường cao
⟹MD⊥AB⟹MD//AC⟹MD⊥AB⟹MD//AC
Do DM//AB,EM//AB⟹D,M,EDM//AB,EM//AB⟹D,M,E thẳng hàng
⟹DE=ME−DM=7,5−4=3,5⟹DE=ME−DM=7,5−4=3,5
Vậy DE=3,5 cm