Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Maéstrozs
Xem chi tiết
Ngọc
Xem chi tiết
anhmiing
Xem chi tiết
Thần Nông
Xem chi tiết
motoyugi
3 tháng 5 2018 lúc 17:39

A B C D E 1 2 1

Qua D kẻ DE // AB ( E \(\in\)AB )

Vì AD là phân giác góc A của \(\Delta ABC\):

\(\Rightarrow\)\(\frac{DC}{DB}=\frac{AC}{AB}\)

\(\Rightarrow\) \(\frac{DC}{DB+DC}=\frac{AC}{AB+AC}\)hay \(\frac{DC}{BC}=\frac{6}{3+6}\)\(\Leftrightarrow\)\(\frac{DC}{BC}=\frac{2}{3}\)(1)

Ta có : AB là phân giác góc A \(\Rightarrow\)\(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{BAC}}{2}=\frac{120}{2}=60^0\)

Mà \(\widehat{A_1}=\widehat{D_1}=60^0\)( so le trong , DE // AB )

\(\Rightarrow\widehat{A_2}=\widehat{D_1}=60^0\Rightarrow\)\(\Delta ADE\)đều

\(\Rightarrow\)AD = DE 

Vì DE // AB ( cách dựng )

Xét \(\Delta ABC\)theo hệ quả định lý Ta-lét ta có:\(\frac{DE}{AB}=\frac{DC}{BC}\)(2)

Thế (1) vào (2) ta được :\(\frac{DE}{AB}=\frac{2}{3}\)hay \(\frac{DE}{3}=\frac{2}{3}\)

\(\Rightarrow DE=\frac{2.3}{3}=2\left(cm\right)\)

\(\Rightarrow AD=2\left(cm\right)\)( AD=DE chứng minh trên )

Ngô Hoài Thanh
Xem chi tiết
ngân diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2023 lúc 15:28

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(\dfrac{3^2+3^2-BC^2}{2\cdot3\cdot3}=-\dfrac{1}{2}\)

=>18-BC^2=-9

=>BC^2=27

=>\(BC=3\sqrt{3}\left(cm\right)\)

\(\dfrac{BC}{sinA}=2R\)

=>\(2\cdot R=3\sqrt{3}:sin120=3\sqrt{3}:\dfrac{1}{2}=6\sqrt{3}\)

=>\(R=3\sqrt{3}\)

thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 3 2023 lúc 13:54

11:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot6\cdot12}{6+12}\cdot\dfrac{1}{2}=4\left(cm\right)\)

12:

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos60=\dfrac{2\cdot3\cdot6}{3+6}\cdot\dfrac{1}{2}=\dfrac{3\cdot6}{3+6}=\dfrac{18}{9}=2\left(cm\right)\)

OoO Kún Chảnh OoO
Xem chi tiết
hải nam lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 22:48

3:

Đặt HB=x; HC=y

Theo đề, ta có: x+y=289 và xy=120^2=14400

=>x,y là các nghiệm của phương trình:

a^2-289a+14400=0

=>a=225 hoặc a=64

=>(x,y)=(225;64) và (x,y)=(64;225)

TH1: BH=225cm; CH=64cm

=>\(AB=\sqrt{225\cdot289}=15\cdot17=255\left(cm\right)\) và \(AC=\sqrt{64\cdot289}=7\cdot17=119\left(cm\right)\)

TH2: BH=64cm; CH=225cm

=>AB=119m; AC=255cm