Tìm x,y biết:
(x+3) . (y - 4 )= 17
tìm x, y biết x4+y4=17 và x+y=3
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
\(=\left(9-2xy\right)^2-2x^2y^2=81-36xy+4x^2y^2-2x^2y^2=81-36xy+2x^2y^2=17\)
<=>\(81-36xy+2x^2y^2-17=0\)<=>\(64-36xy+2x^2y^2=0\)
<=>\(2\left(x^2y^2-18xy+32\right)=0\)<=>\(2\left[\left(xy-9\right)^2-49\right]=0\)
<=>\(\left(xy-9\right)^2-49=0\Leftrightarrow\left(xy-9\right)^2=49\)
<=>\(\orbr{\begin{cases}xy-9=-7\\xy-9=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}xy=2\\xy=16\end{cases}}\)
+) Với xy=2
Có: \(x+y=3\Leftrightarrow x=3-y\Leftrightarrow xy=3y-y^2=2\Leftrightarrow3y-y^2-2=0\)
\(\Leftrightarrow y^2-3y+2=0\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)
<=> Với y=2 thì x=1 hoặc y=1 thì x=2
+) Với xy=16
\(xy=3y-y^2=16\Leftrightarrow3y-y^2-16=0\Leftrightarrow y^2-3y+16=0\)
<=>\(\left(y-\frac{3}{2}\right)^2+\frac{55}{4}=0\Leftrightarrow\left(y-\frac{3}{2}\right)^2=-\frac{55}{4}\)
pt vô nghiệm vì \(\left(y-\frac{3}{2}\right)^2\ge0\)
Vậy ...............................
tìm x y z biết:
a) 3x = 7y và x - 2y = 2
b) x/2 = y/3 x/3 = z/4 và x + y - z = 7
c) x/2 = y/3 y/5 = z/4 và 2x - y + z = 17
Làm nhanh dùm mình ạ!
a) 3x = 7y ⇒ x/7 = y/3
⇒ x/7 = 2y/6
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2
x/7 = 2 ⇒ x = 2.7 = 14
y/3 = 2 ⇒ y = 2.3 = 6
Vậy x = 14; y = 6
b) x/2 = y/3 ⇒ x/6 = y/9 (1)
x/3 = z/4 ⇒ x/6 = z/8 (2)
Từ (1) và (2) ⇒ x/6 = y/9 = z/8
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1
x/6 = 1 ⇒ x = 1.6 = 6
y/9 = 1 ⇒ y = 1.9 = 9
z/8 = 1 ⇒ z = 1.8 = 8
Vậy x = 6; y = 9; z = 8
c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)
y/5 = z/4 ⇒ y/15 = z/12 (4)
Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1
2x/20 = 1 ⇒ x = 1.20 : 2 = 10
y/15 = 1 ⇒ y = 1.15 = 15
z/12 = 1 ⇒ z = 1.12 = 12
Vậy x = 10; y = 15; z = 12
tìm x
x-4/3= 3-y/4 biết 2x-3y =17
Tìm ba số x, y, z biết :7/2x+2 =3/2y−4 =5/z+4 và x + y + z = 17
\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}\Rightarrow\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{10}{2z+8}\)(*)
Theo t/c dãy tỉ số bằng nhau
(*) = \(\dfrac{7+3+10}{2x+2y+2z+6}=\dfrac{20}{34+6}=\dfrac{20}{40}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{2x+2}{7}=2\Leftrightarrow x=6;\dfrac{2y-4}{3}=2\Leftrightarrow y=5;\dfrac{2z+8}{10}=2\Leftrightarrow z=6\)
tìm x,y,z biết 3x-5y/2=7y-3z/3=5z-7x/4; x+y+z=17
Có:LCM(3,5,7)= 105
=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)
Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0
=>3x-5y=0 ;7y-3z=0 ;5z-7x=0
Xét 3x-5y=0 và 7y-3z=0
Có: 3x=5y :7y=3z
=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)
=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)
Áp dung dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)
Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)
\(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)
\(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)
2.Thấy $15;117y$ chia hết cho 3
\Rightarrow $38x$ chia hết cho 3
\Rightarrow $x$ chia hết cho 3
Đặt $x=3a$ (a thuộc Z)
\Rightarrow PT trở thành: $38a+39y=5$
\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$
Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)
\Rightarrow $a=39b-5$
\Rightarrow $y=b- (39b-5)=5-38b$
$x=3 (39b-5)=...$
Với b nguyên
Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên
tìm x y z biết
a) (x+2)/3=(y-1)/4=(z+5)/7 và 2x-y+z=17
Tìm x; y; z. Biết :
a. 4/ x+1=2/y-2=3/z+2 và x+y+z =17
Ta có: \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)
Đặt \(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\left(k\ne0\right)\)
\(\Rightarrow x=4k-1;y=2k+2;z=3k-2\)
Theo đề ta có:
\(x+y+z=17\)
hay \(4k-1+2k+2+3k-2=17\)
\(9k-1=17\)
\(9k=18\)
\(k=\frac{18}{9}=2\)
Do đó:
\(x=4.2-1=8-1=7\)
\(y=2.2+2=4+2=6\)
\(z=3.2-2=6-2=4\)
Vậy \(x=7;y=6;z=4\)
hok tốt!!
Trả lời:
\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)\(\left(Đk:x\ne-1;y\ne2;z\ne-2\right)\)
\(\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)
Đặt\(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x+1=4k\\y-2=2k\\z+2=3k\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4k-1\\y=2k+2\\z=3k-2\end{cases}}\)
Mà\(x+y+z=17\)
\(\Rightarrow4k-1+2k+2+3k-2=17\)
\(\Leftrightarrow9k-1=17\)
\(\Leftrightarrow9k=18\)
\(\Leftrightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=2.4-1=7\\y=2.2+2=6\\z=2.3-2=4\end{cases}}\)(Thỏa mãn\(Đk:x\ne-1;y\ne2;z\ne-2\))
Vậy\(\hept{\begin{cases}x=7\\y=6\\z=4\end{cases}}\)
Hok tốt!
Good girl
Tìm x , y thuộc Z biết :
| x + 4 | < 3
| x - 14 + 17 | + | y + 10 - 12 | < hoặc bằng 0
a) Ta có: \(\left|x+4\right|< 3\)
\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)
\(\Rightarrow x+4\in\left\{0;\pm1;\pm2\right\}\)
Ta có bảng
x+4 | 0 | 1 | -1 | 2 | -2 |
x | -4 | -3 | -5 | -2 | -6 |
Vậy...
b) ta có: \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)
Mà \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)
\(\Rightarrow\left|x-14+17\right|+\left|y+10-12\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-14+17=0\\y+10-12=0\end{cases}\Rightarrow}\hept{\begin{cases}x=14-17\\y=-10+12\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)
Vậy ....
hok tốt!!
á) | x + 4 | < 3
Ta lại có | x + 4 | ≥ 0 \(\forall\) x ∈ Z
Mà x ∈ Z
<=> | x + 4 | ∈ { 0 ; 1 ; 2 }
\(\Leftrightarrow x+4\in\left\{0;1;-1;2;-2\right\}\)
<=> x ∈ { - 4 ; - 3 ; - 7 ; - 2 ; - 6 }
Vậy ...
b) | x - 14 + 17 | + | y + 10 - 12 | ≤ 0
<=> | x + 3 | + | y - 2 | ≤ 0
+) Lại có \(\hept{\begin{cases}\left|x+3\right|\text{≥}0\\\left|y-2\right|\text{≥}0\end{cases}\forall x;y}\)
<=> | x + 3 | + | y - 2 | ≥ 0 \(\forall\) x ; y
Do đó để | x + 3 | + | y - 2 | ≤ 0 thì \(\hept{\begin{cases}\left|x+3\right|=0\\\left|y-2\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
Vậy ..... <=> x = - 3 và y = 2
Bài giải
a, \(\left|x+4\right|< 3\)
\(\Rightarrow\text{ }-3< x+4< 3\)
\(\Rightarrow\text{ }-7< x< -1\)
\(\Rightarrow\text{ }x\in\left\{-6\text{ ; }-5\text{ ; }-4\text{ ; }-3\text{ ; }-2\right\}\)
b, \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)
\(\left|x+3\right|+\left|y-2\right|\le0\)
Mà \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|y-2\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-3\text{ ; }2\right)\)
Tìm x,y,z biết : |x + 11/7|+|x + 2/17|+|x + 4/17|=4x