Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Tú Anh
Xem chi tiết
Trà My
5 tháng 1 2017 lúc 16:57

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)

\(=\left(9-2xy\right)^2-2x^2y^2=81-36xy+4x^2y^2-2x^2y^2=81-36xy+2x^2y^2=17\)

<=>\(81-36xy+2x^2y^2-17=0\)<=>\(64-36xy+2x^2y^2=0\)

<=>\(2\left(x^2y^2-18xy+32\right)=0\)<=>\(2\left[\left(xy-9\right)^2-49\right]=0\)

<=>\(\left(xy-9\right)^2-49=0\Leftrightarrow\left(xy-9\right)^2=49\)

<=>\(\orbr{\begin{cases}xy-9=-7\\xy-9=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}xy=2\\xy=16\end{cases}}\)

+) Với xy=2

Có: \(x+y=3\Leftrightarrow x=3-y\Leftrightarrow xy=3y-y^2=2\Leftrightarrow3y-y^2-2=0\)

\(\Leftrightarrow y^2-3y+2=0\Leftrightarrow\left(y-2\right)\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)

<=> Với y=2 thì x=1 hoặc y=1 thì x=2

+) Với xy=16

\(xy=3y-y^2=16\Leftrightarrow3y-y^2-16=0\Leftrightarrow y^2-3y+16=0\)

<=>\(\left(y-\frac{3}{2}\right)^2+\frac{55}{4}=0\Leftrightarrow\left(y-\frac{3}{2}\right)^2=-\frac{55}{4}\)

pt vô nghiệm vì \(\left(y-\frac{3}{2}\right)^2\ge0\)

Vậy ...............................

Mạc Anh
Xem chi tiết
Kiều Vũ Linh
5 tháng 12 2023 lúc 10:14

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

Thùy Linh V Sone
Xem chi tiết
•¢ɦẹρ➻¢ɦẹρ
Xem chi tiết
Nguyễn Huy Tú
2 tháng 9 2021 lúc 12:16

\(\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{5}{z+4}\Rightarrow\dfrac{7}{2x+2}=\dfrac{3}{2y-4}=\dfrac{10}{2z+8}\)(*)

Theo t/c dãy tỉ số bằng nhau 

(*) = \(\dfrac{7+3+10}{2x+2y+2z+6}=\dfrac{20}{34+6}=\dfrac{20}{40}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{2x+2}{7}=2\Leftrightarrow x=6;\dfrac{2y-4}{3}=2\Leftrightarrow y=5;\dfrac{2z+8}{10}=2\Leftrightarrow z=6\)

 

Phạm Bảo Ngọc
Xem chi tiết
Tibber Bear
7 tháng 4 2017 lúc 9:56

Có:LCM(3,5,7)= 105

=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)

Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0

=>3x-5y=0 ;7y-3z=0 ;5z-7x=0

Xét 3x-5y=0 và 7y-3z=0

Có: 3x=5y :7y=3z

=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)

=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)

Áp dung dãy tỉ số bằng nhau ta có:

\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)

Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)

          \(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)

           \(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)

Sáng Đinh
24 tháng 3 2021 lúc 20:41

2.Thấy $15;117y$ chia hết cho 3

\Rightarrow $38x$ chia hết cho 3

\Rightarrow $x$ chia hết cho 3

Đặt $x=3a$ (a thuộc Z)

\Rightarrow PT trở thành: $38a+39y=5$

\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$

Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)

\Rightarrow $a=39b-5$

\Rightarrow $y=b- (39b-5)=5-38b$

$x=3 (39b-5)=...$

Với b nguyên

Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên

Khách vãng lai đã xóa
Hoàng Ích Phúc
Xem chi tiết
Phạm Hữu Dũng
Xem chi tiết
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
13 tháng 3 2020 lúc 18:42

 Ta có: \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)

Đặt \(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\left(k\ne0\right)\)

\(\Rightarrow x=4k-1;y=2k+2;z=3k-2\)

Theo đề ta có:

\(x+y+z=17\)

hay \(4k-1+2k+2+3k-2=17\)

\(9k-1=17\)

\(9k=18\)

\(k=\frac{18}{9}=2\)

Do đó:

\(x=4.2-1=8-1=7\)

\(y=2.2+2=4+2=6\)

\(z=3.2-2=6-2=4\)

Vậy \(x=7;y=6;z=4\)

hok tốt!!

Khách vãng lai đã xóa
Gukmin
13 tháng 3 2020 lúc 18:55

Trả lời:

\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)\(\left(Đk:x\ne-1;y\ne2;z\ne-2\right)\)

\(\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)

Đặt\(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\)

\(\Rightarrow\hept{\begin{cases}x+1=4k\\y-2=2k\\z+2=3k\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4k-1\\y=2k+2\\z=3k-2\end{cases}}\)

\(x+y+z=17\)

\(\Rightarrow4k-1+2k+2+3k-2=17\)

\(\Leftrightarrow9k-1=17\)

\(\Leftrightarrow9k=18\)

\(\Leftrightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}x=2.4-1=7\\y=2.2+2=6\\z=2.3-2=4\end{cases}}\)(Thỏa mãn\(Đk:x\ne-1;y\ne2;z\ne-2\))

Vậy\(\hept{\begin{cases}x=7\\y=6\\z=4\end{cases}}\)

Hok tốt!

Good girl

Khách vãng lai đã xóa
nguyễn thu huyền
Xem chi tiết
✎✰ ๖ۣۜLαɗσηηα ༣✰✍
24 tháng 3 2020 lúc 19:35

a) Ta có:  \(\left|x+4\right|< 3\)

\(\Rightarrow\left|x+4\right|\in\left\{0;1;2\right\}\)

\(\Rightarrow x+4\in\left\{0;\pm1;\pm2\right\}\)

Ta có bảng

x+401-12-2
x-4-3-5-2-6

Vậy...

b) ta có: \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)

Mà \(\left|x-14+17\right|+\left|y+10-12\right|\ge0\)

\(\Rightarrow\left|x-14+17\right|+\left|y+10-12\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x-14+17\right|=0\\\left|y+10-12\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x-14+17=0\\y+10-12=0\end{cases}\Rightarrow}\hept{\begin{cases}x=14-17\\y=-10+12\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)

Vậy ....

hok tốt!!

Khách vãng lai đã xóa
✰Nanamiya Yuu⁀ᶜᵘᵗᵉ
24 tháng 3 2020 lúc 19:35

á)  | x + 4 | < 3

Ta lại có | x + 4 | ≥ 0  \(\forall\) x  ∈  Z

Mà x ∈  Z

<=> | x + 4 | ∈  { 0 ; 1 ; 2 }

\(\Leftrightarrow x+4\in\left\{0;1;-1;2;-2\right\}\)

<=> x  ∈  { - 4 ; - 3 ; - 7 ; - 2 ; - 6 }

Vậy ...

b) | x - 14 + 17 | + | y + 10 - 12 |  ≤ 0 

<=> | x + 3 | + | y - 2 |  ≤ 0

+) Lại có \(\hept{\begin{cases}\left|x+3\right|\text{≥}0\\\left|y-2\right|\text{≥}0\end{cases}\forall x;y}\)

<=> | x + 3 | + | y - 2 | ≥  0  \(\forall\) x ; y

Do đó để | x + 3 | + | y - 2 | ≤ 0  thì \(\hept{\begin{cases}\left|x+3\right|=0\\\left|y-2\right|=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)

Vậy ..... <=> x = - 3 và y = 2

Khách vãng lai đã xóa
Fudo
24 tháng 3 2020 lúc 19:44

                                                        Bài giải

a, \(\left|x+4\right|< 3\)

\(\Rightarrow\text{ }-3< x+4< 3\)

\(\Rightarrow\text{ }-7< x< -1\)

\(\Rightarrow\text{ }x\in\left\{-6\text{ ; }-5\text{ ; }-4\text{ ; }-3\text{ ; }-2\right\}\)

b, \(\left|x-14+17\right|+\left|y+10-12\right|\le0\)

\(\left|x+3\right|+\left|y-2\right|\le0\)

\(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|y-2\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+3=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)

\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-3\text{ ; }2\right)\)

Khách vãng lai đã xóa
Quế Phan Hà An
Xem chi tiết