Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, H là trọng tâm ∆ ACD, SH ⊥ (ABCD). Biết ∆ SBD vuông tại S. Tính thể tích V của S.ABCD.
A. V = a 3 2 12
B. V = a 3 4
A. V = a 3 2 12
D. V = 2 a 3 9
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB=a, BC=2a, BD=a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 0 . Tính thể tích V của khối chóp S.ABCD theo a.
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Đáp án D
Dựng HK ⊥ BD, do SH ⊥ BD nên ta có:
(SKH) ⊥ BD => Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là góc SKH = 600
Lại có:
Do đó
Vậy
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB = a, BC = 2a, BD = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 600. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Chọn D
Ta có
Gọi H là trung điểm AB thì ,
kẻ , ta có là góc giữa (SBD) và (ABCD), do đó = 600
Gọi AM là đường cao của tam giác vuông ABD. Khi đó, ta có:
câu 1 : cho hình chóp S.ABCD có đáy ABCD là HCN AB = a ; AD = 2a ; cạnh bên SA vuông góc với đáy . tính thể tích V của khối chóp S.ABCD biết góc giữa 2 mặt phẳng (SBD) và (ABCD) = 60o
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết AB =a, BC =2a, B D = a 10 . Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 độ. Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên mặt đáy (ABCD) trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 Góc giữa hai mặt phẳng (SBD) và mặt phẳng đáy là 60 ° . Tính thể tích V của khối chóp S.ABCD theo a.
A. V = 3 30 a 3 8
B. V = 30 a 3 4
C. V = 30 a 3 12
D. V = 30 a 3 8
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.
A. V = 6 a 3 12
B. V = 6 a 3 3
C. V = 6 a 3 4
D. V = 6 a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD
A. V = 6 a 3 12
B. V = 6 a 3 3
C. V = 6 a 3 4
D. V = 2 a 3 6
Vẽ S H ⊥ A C tại H.
Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C
⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D
Theo đề ∆ S A C vuông tại S nên ta có:
S C = A C 2 - S A 2 = 6 a 2
và S H = S A . S C A C
= 2 a 2 . 6 a 2 2 a = 6 a 4
Vậy V = 1 3 S H . S A B C D = 6 a 3 12
Chọn đáp án A.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD
A. V = 6 a 3 12
B. V = 6 a 3 3
C. V = 6 a 3 4
D. V = 2 a 3 6