Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 2 x + 2 y + 3 z = 0 . Các điểm A, B, C lần lượt là giao điểm (khác gốc tọa độ) của mặt cầu (S) và các trục tọa độ Ox, Oy, Oz. Phương trình mặt phẳng (ABC) là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-5)² + (y-1)² + (z+2)²=9. Tính bán kính R của mặt cầu (S).
A. R=18
B. R=9
C. R=3
D. R=6.
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Đáp án A
Mặt cầu (S) có tâm I(-1;2;1) và bán kính R=√9=3.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S ): ( x-5 )²+( y-1 )²+( z+2 )²=16. Tính bán kính của (S).
A. 4
B. 16
C. 7
D. 5.
Đáp án A
Bán kính của mặt cầu ( S ) là R=√16 =4.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Tính bán kính R của (S)?
A. R=3
B. R=18
C. R=9
D. R=6
Đáp án A
Từ phương trình mặt cầu (S) ⇒ bán kính R= 9 =3
Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu đó
A. I(-1;2;3), R=2
B. I(-1;2;-3), R=4
C. I(1;-2;3); R=2
D. I(1;-2;3), R=4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2+y^2+z^2-6x bán kính R=9 có phương trình là
A. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 9
B. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 81
C. ( x - 4 ) 2 + ( y + 5 ) 2 + ( z - 6 ) 2 = 9
D. ( x + 4 ) 2 + ( y - 5 ) 2 + ( z + 6 ) 2 = 81
Trong không gian với hệ tọa độ oxyz, cho mặt cầu (S) : x 2 + ( y + 2 ) 2 + ( z - 2 ) 2 = 8 . Tính bán kính R của (S)
A. R=8
B. R=2
C. R=4
D. R=64
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²+2x-4y+6z-2=0. Tìm tọa độ tâm I và tính bán kính R của (S).
A. Tâm I(-1;2;-3) và bán kính R=4
B. Tâm I(1;-2;3) và bán kính R=4
C. Tâm I(-1;2;3) và bán kính R=4
D. Tâm I(1;-2;3) và bán kính R=16.
Đáp án A
Ta có (S): (x+1)²+(y-2)²+(z+3)²=16.
Do đó mặt cầu (S) có tâm I(-1;2;-3) và bán kính R=4.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x + 1 2 + y - 3 2 + z - 2 2 = 9 Tọa độ tâm và bán kính của mặt cầu (S) là
A. I(-1;3;2) R =9
B. I(1;-3;-2) R = 9
C. I(-1;3;2) R = 3
D. I(1;3;2) R = 3
Đáp án C
Tọa độ tâm và bán kính mặt cầu (S): I(-1;3;2) R = 3