Cho hàm số bậc nhất y=ax+b có đồ thị đi qua điểm M(1;4). Biết rằng đồ thị của hàm số đã cho cát trục Ox tại điểm P có hoành độ dương và cắt trục Oy tại điểm Q có tung độ dương. Tìm a, b sao cho OP+OQ nhỏ nhất ( Với O là gốc tọa độ )
Cho hàm số bậc nhất \(y = ax - 4\)
a) Tìm hệ số góc \(a\) biết rằng đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\).
b) Vẽ đồ thị của hàm số.
a) Vì đồ thị hàm số đi qua điểm \(M\left( {1; - 2} \right)\)nên ta có:
\( - 2 = a.1 - 4 \Leftrightarrow a = - 2 + 4 = 2\)
Hàm số cần tìm là \(y = 2x - 4\) có hệ số góc \(a = 2\).
b) Cho \(x = 0 \Rightarrow y = - 4\) ta được điểm \(A\left( {0; - 4} \right)\) trên trục \(Oy\).
Cho \(y = 0 \Rightarrow x = \dfrac{4}{2} = 2\) ta được điểm \(B\left( {2;0} \right)\) trên \(Ox\).
Đồ thị hàm số là đường thẳng đi qua hai điểm \(A\) và \(B\).
Cho hàm số bậc nhất y = ax + b. Tìm a và b, biết rằng đồ thị hàm số đi qua điểm M (−1; 1) và cắt trục hoành tại điểm có hoành độ là 5.
A. a = 1 6 ; b = 5 6
B. a = − 1 6 ; b = − 5 6
C. a = 1 6 ; b = − 5 6
D. a = − 1 6 ; b = 5 6
Xác định hàm số bậc nhất y = ax + b. Biết đồ thị hàm số song
song với đường thẳng y = x + 2010 và đi qua điểm M(1 ; –1).
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b\ne2010\\a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\end{matrix}\right.\Leftrightarrow y=x-2\)
Cho hàm số bậc nhất y= ax +b có đồ thị đi qua M(1;4 ) .Đồ thị hàm số y=ax+b cắt trục Ox tại điểm P có hoành độ dương và cắt trục Oy tại Q có tung độ dương . Tìm a,b để OP+OQ nhỏ nhất ( với O là gốc tọa độ)
Cho hàm số bậc nhất y=ax+2
a)Xác định hệ số góc a,biết rằng đồ thị của hàm số đi qua điểm M(1;3)
b)Vẽ đồ thị của hàm số
c)Tính góc tạo bởi đồ thị của hàm số và trục Ox
1) xác định đồ thị hàm số bậc nhất \(y=ax+b\) trong mỗi trường hợp sau:
a) đồ thị hàm số đi qua A(-1; 2), B(2; -3)
b) đồ thị hàm số có hệ số góc là 2 và cắt trục tung tại điểm có tung độ là 2
c) đồ thị hàm số tạo với trục hoành 1 góc \(60^0\) và đi qua điểm B(1; -3)
giúp mk vs ah mk cần gấp
Bài 3. Cho hàm số bậc nhất y = ax – 5 Tìm các giá trị của m để hàm số y = (2m – 4)x + 5
a) Đồng biến trên R. b. Nghịch biến trên R
a) Tìm hệ số góc a, biết đồ thị hàm số y = ax – 5 đi qua điểm A(3 ; 1)
b) Vẽ đồ thị hàm số vừa tìm được ở câu a.
Mn giúp mình với
Cho hàm số bậc nhất y=(2m-1)x+m-3. Tìm m để hàm số bậc nhất đi qua 2 điểm có tọa độ 2,5. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = căn 2 -1. Chứng minh rằng đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Xác định hàm số bậc nhất y=ax+b biết đồ thị hàm số đi qua A(-1,5) và song song với đồ thị hàm số y=3x+1 biết phương trình của đồ thị hàm số đi qua M(-1,4) và song song với đường thẳng y=2x-1.
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
b) a = 3 và đồ thị của hàm số đi qua điểm A(2; 2)
c) Đồ thị của hàm số song song với đường thẳng y = √3 x và đi qua điểm B(1; √3 + 5 ).
a) Với a = 2 hàm số có dạng y = 2x + b.
Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5 khi đó tung độ bằng 0 nên:
0 = 2.1,5 + b => b = -3
Vậy hàm số là y = 2x – 3
b) Với a = 3 hàm số có dạng y = 3x + b.
Đồ thị hàm số đi qua điểm (2; 2), nên ta có:
2 = 3.2 + b => b = 2 – 6 = - 4
Vậy hàm số là y = 3x – 4
c) Đường thẳng y = ax + b song song với đường thẳng y = √3 x nên a = √3 và b ≠ 0. Khi đó hàm số có dạng y = √3 x + b
Đồ thị hàm số đi qua điểm (1; √3 + 5) nên ta có:
√3 + 5 = √3 . 1 + b => b = 5
Vậy hàm số là y = √3 x + 5