Gọi S là tập tất cả các giá trị nguyên của m để giá trị lớn nhất của hàm số y = sin x + m 3 - 2 sin x thuộc đoạn [-2;2]. Khi đó số phần tử của S là
A. 11
B. 10
C. Vô số
D. 9
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Cho hàm số y = f (x) có đồ thị như hình bên. Gọi S là tập tất cả các giá trị nguyên dương của tham số m để hàm số y = f x - 2018 + m có 5 điểm cực trị. Tổng tất cả các giá trị của tập S bằng
A. 9
B. 7
C. 12
D. 18
Gọi S là tập tất cả các giá trị nguyên của tham số thực m sao cho giá trị lớn nhất của hàm số y = 1 4 x 4 - 14 x 2 + 48 x + m - 30 trên đoạn [0;2] không vượt quá 30. Tính tổng tất cả các phần tử của S
A.108
B.120
C.210
D.136
Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên đoạn [0;2] không vượt quá 20. Tổng các phần tử của S bằng
A.210
B.-195
C.105
D.300
Chọn C
Xét hàm số trên đoạn
Ta có ;
Bảng biến thiên
; .
Để thì .
Mà nên .
Vậy tổng các phần tử của là .
Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên đoạn [0;2] không vượt quá 20. Tổng các phần tử của S bằng
A. 210
B. -195
C. 105
D. 300
Chọn C
Xét hàm số trên đoạn [0;2]
Bảng biến thiên:
với f(0) = m - 20; f(2) = m + 6
Xét hàm số y = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên đoạn [0;2]
+ Trường hợp 1: Ta có:
suy ra không có giá trị m.
+ Trường hợp 2: Ta có:
Vì m nguyên nên
+ Trường hợp 3:
Vì m nguyên nên
Vậy Tổng các phần tử của S bằng
Hình vẽ bên là đồ thị của hàm số y=f(x). Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số y = f x − 1 + m có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng
A. 12
B. 15
C. 18
D. 9
Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 - m x + 2 m x - 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. - 8 3
B. 5
C. 5 3
D. -1
Chọn D
Xét hàm số y = x 2 - m x + 2 m x - 2 trên [-1;1] có:
Bảng biến thiên
Trường hợp 1. Khi đó
Trường hợp 2.
Khả năng 1.
Khi đó
Khả năng 2 Khi đó
Trường hợp này vô nghiệm.
Khả năng 3. Khi đó Vô nghiệm.
Vậy có hai giá trị thỏa mãn là Do đó tổng tất cả các phần tử của S là -1.
Gọi S là tập hợp các giá trị của tham số m để giá trị lớn nhất của hàm số y = x 2 − m x + 2 x − 2 trên đoạn [-1;1] bằng 3. Tính tổng tất cả các phần tử của S.
A. − 8 3
B. 5
C. 5 3
D. -1
Gọi S là tập hợp tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số y = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên đoạn [0;2] không vượt quá 20. Tổng các phần tử của S bằng:
A. 210
B. 105
C. -195
D. 300
Đáp án B
Xét hàm số f x = 1 4 x 4 - 19 2 x 2 + 30 x + m - 20 trên [0;2] có f ' x = 0 ⇔ x = 2
Tính f 0 = m - 20 ; f 2 = m + 6 → m a x 0 ; 2 y = m a x [ 0 ; 2 ] f x = m - 20 ; m + 6
TH1. Với m a x 0 ; 2 y = m - 20 ⇒ m - 20 ≥ m + 6 m - 20 ≤ 20 ⇔ m ≤ 7 - 20 ≤ m ≤ 20 ⇔ 0 ≤ m ≤ 7
TH2. Với m a x 0 ; 2 y = m + 6 ⇒ m - 20 ≤ m + 6 m + 6 ≤ 20 ⇔ m ≥ 7 - 20 ≤ m + 6 ≤ 20 ⇔ 7 ≤ m ≤ 14
Kết hợp với m ∈ ℤ , ta được m = 0 ; 1 ; 2 ; . . . ; 14 → ∑ m = 105 .