Cho hàm số y = f x có bảng biến thiên như sau
Số giao điểm của đồ thị hàm số f x và trục hoành là
A. 1.
B. 2.
C. 0.
D. 3.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số y = f ( x ) có bảng biến thiên như sau
Số giao điểm của đồ thị hàm số f(x) và trục hoành là
A. 1
B. 2
C. 0
D. 3
Kẻ đường thẳng y=0 đồ thị x=a>2 tại điểm duy nhất có hoành độ
Chọn đáp án A.
Cho hàm số y = f(x) có bảng biến thiên như sau
Đồ thị hàm số y=f(|x|) có bao nhiêu điểm cực trị
A. 3
B. 2
C. 4
D. 1
Cho hàm số y = f(x) có bảng biến thiên như sau
Đồ thị hàm số y = f x có bao nhiêu điểm cực trị
A. 4
B. 2
C. 3
D. 5
Đáp án C
Từ bảng biến thiên ta thấy f x ≥ 1 > 0 , ∀ x > − 1 nên phương trình f(x) = 0 có một nghiệm duy nhất x 0 < − 1
Mặt khác ta có y = f x = f x , f x ≥ 0 f x , f x < 0
Do đó ta có bảng biến thiên của y= f x
Từ bảng biến thiên ta thấy đồ thị hàm số y= f x có 3 điểm cực trị
Cho hàm số y=f(x) có bảng biến thiên như sau. Đồ thị hàm số y = f x có bao nhiêu điểm cực trị
A.5
B.6
C.3
D.7
Đáp án D
Ta vẽ lại bảng biến thiên của f x .
Từ bảng biến thiên này hàm số y = f x có cực trị
Cho hàm số như trong ảnh có đồ thị là (C) 1, số giao điểm của đồ thị với trục hoành 2, lập bảng biến thiên nên khoảng đồng biến, nghịch biến của hàm số f(x) Giúp em với ạ
Cho hàm số y=f(x) xác đinh, liên tục trên ~ và có bảng biến thiên như sau:
Đồ thị hàm số y = | f ( x ) | có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
Chọn B.
Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x) với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm trên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Cho hàm số y=f(x) có bảng biến thiên như sau
Số tiệm cận ngang của đồ thị hàm số đã cho là
A. 4
B. 1
C. 3
D. 2
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Đồ thị hàm số y = | f ( x ) | có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
Chọn B.
Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Đáp án: 3 cực trị
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như hình sau
Đồ thị hàm số y=f(x) cắt đường thẳng y = -2018 tại bao nhiêu điểm ?
A. 4
B. 0
C. 2
D. 1
Chọn C.
Dựa vào BBT ta thấy đường thẳng y = -2018 nằm dưới điểm cực tiểu của đồ thị hàm số, suy ra đường thẳng y = -2018 cắt đồ tị hàm số tại 2 điểm