tìm n thuộc Z
n^2 + 4n -8 chia hết cho n +3
tìm n thuộc N:
a) 4n+3 chia hết cho n-2.
c)8-n2 chia hết cho n-1.
TÌm n thuộc N để:
a) 3n+2 chia hết cho n-1
b) n+8 chia hết cho n+3
c) n^2+2n+7 chia hết cho n+2
d) 4n-5 chia hết cho 2n-1
Tìm n thuộc N sao cho:
a) n+8 chia hết cho n+3
b) 3n+2 chia hết cho n-1
c) 4n-5 chia hết cho 2n-1
Tìm n thuộc n để:
a) 3n +2 chia hết cho n-1
b) n + 8 chia hết cho n + 3
c) n + 6 chia hết cho n - 1
d) 4n - 5 chia hết cho 2n -1
a, \(3n+2⋮n-1\)
\(\Rightarrow3n-3+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
Vì : \(3\left(n-1\right)⋮n-1\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=5\Rightarrow n=5+1\Rightarrow n=6\)
Vậy : \(n\in\left\{2;6\right\}\) thì \(3n+2⋮n-1\)
b, \(n+8⋮n+3\)
Vì : \(n+3⋮n+3\)
\(\Rightarrow\left(n+8\right)-\left(n+3\right)⋮n+3\)
\(\Rightarrow n+8-n-3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
Mà : \(n+3\ge3\)
\(\Rightarrow n+3=5\Rightarrow n=5-3\Rightarrow n=2\)
Vậy n = 2 thì : \(n+8⋮n+3\)
c, \(n+6⋮n-1\)
Mà : \(n-1⋮n-1\)
\(\Rightarrow\left(n+6\right)-\left(n-1\right)⋮n-1\)
\(\Rightarrow n+6-n+1⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\left\{1;7\right\}\)
+) \(n-1=1\Rightarrow n=1+1\Rightarrow n=2\)
+) \(n-1=7\Rightarrow n=7+1\Rightarrow n=8\)
Vậy \(n\in\left\{2;8\right\}\) thì \(n+6⋮n-1\)
d, \(4n-5⋮2n-1\)
\(\Rightarrow4n-2-3⋮2n-1\)
\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)
Vì : \(2\left(2n-1\right)⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{1;3\right\}\)
+) \(2n-1=1\Rightarrow2n=1+1\Rightarrow2n=2\Rightarrow n=2\div2\Rightarrow n=1\)
+) \(2n-1=3\Rightarrow2n=3+1\Rightarrow2n=4\Rightarrow n=4\div2\Rightarrow n=2\)
Vậy \(n\in\left\{1;2\right\}\) thì \(4n-5⋮2n-1\)
Bài 1:Tìm n thuộc z sao cho
a) n+1 chia hết cho n-1
b) 3n -2 chia hết cho n+2
c) n^2 +4n -8 chia hết cho n+3
d) n^2 +5 chia hết cho n-1
Tìm n thuộc N
a) 8n + 193 chia hết cho 4n + 3
b) 15 chia hết cho 2n + 3
c) 2n + 8 chia hết cho n + 2
trình bày cách làm nha
a) Ta có : 8n + 193 = ( 8n + 6 ) + 187 = 4 . ( 4n + 3 ) + 187
vì 4 . ( 4n + 3 ) \(⋮\)4n + 3 nên để 8n + 193 \(⋮\)4n + 3 thì 187 \(⋮\)4n + 3
\(\Rightarrow\)4n + 3 \(\in\)Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }
Lập bảng ta có :
4n+3 | 1 | 11 | 17 | 187 |
n | -1/2(loại) | 2 | 7/2(loại) | 46 |
Vậy n \(\in\){ 2 ; 46 }
còn lại tương tự
a. 8n+196 chia hết cho 4n+3
=> 8n+6+187 chia hết cho 4n+3
=> 2(4n+3)+187 chia hết cho 4n+3
=> 187 chia hết cho 4n+3
=> 4n+3 thuộc Ư(187) và n là số tự nhiên
=> 4n+3 thuộc {1;11;17;187}
•4n+3=1=> n ko là số tự nhiên
• 4n+3=11=> n=2
•4n+3=17=> n ko là số tự nhiên
•4n+3=187=> n=46
Vậy n=2 hoặc n=46
b. 15 chia hết cho 2n+3
=> 2n+3 thuộc Ư(15)
=> 2n+3 thuộc {1;3;5;15}
•2n+3=1=> n ko là số tự nhiên
•2n+3=3=> n=0
•2n+3=5=> n=1
•2n+3=15=> n=6
Vậy n thuộc {0;1;6}
c. 2n+8 chia hết cho n+2
=> 2(n+2)+4 chia hết cho n+2
=> 4 chia hết cho n+2
=> n+2 thuộc {1;2;4}
•n+2=1=> n ko là số tự nhiên
• n+2=2=>n=0
• n+2=4=> n=2
Vậy n=0 hoặc n=2
tìm n thuộc N để
a, n+8 chia hết cho n+1
b, 2n +11 chia hết cho n-3
c, 4n -3 chia hết cho 2n +1
a, n + 8 chia hết cho n + 1
=> n + 1 + 7 chia hết cho n + 1
=> 7 chia hết cho n + 1
=> n + 1 \(\in\)Ư ( 7 )
Mà Ư(7) = { 1 ; 7 }
+> n + 1 = 1 => n = 0
+> n + 1 = 7 => n = 6
b,
2n + 11 chia hết cho n - 3
=> 2n - 6 + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\)Ư ( 17 )
Mà Ư(17) = { 1 ; 17 }
+> n - 3 = 1 => n = 4
+> n - 3 = 17 => n = 20
c,
4n - 3 chia hết cho 2n + 1
=> 4n + 2 - 5 chia hết cho 2n + 1
=> 5 chia hết cho 2n + 1
=> 2n + 1 \(\in\)Ư ( 5 )
Mà Ư(5) = { 1 ; 5 }
+> 2n + 1 = 1 => n = 0
+> 2n + 1 = 5 => n = 2
8^102-2^102 chia hết cho 10
9^n+1 chia hết cho 10 n thuộc N
2^4n+1 chia hết cho 5 n thuộc N
3^4n+1+2 chia hết cho 5 n thuộc N
bài này là chứng minh đó
Tìm n thuộc Z biết:
a) 4n+5 chia hết cho 2n
b) n+8 chia hết cho n-2
\(n+8⋮n-2\)
\(n-2+10⋮n-2\)
\(10⋮n-2\)hay \(n-2\inƯ\left(10\right)=\left\{1;2;5;10\right\}\)
n - 2 | 1 | 2 | 5 | 10 |
n | 3 | 4 | 7 | 12 |