Cho hàm số f(x) có đạo hàm và liên tục trên 0 ; π 2 , thoả mãn ∫ 0 π / 2 f ' x cos 2 x d x = 10 và f(0)= 3. Tích phân ∫ 0 π / 2 f x sin 2 x d x bằng
A. -13
B. 13
C. 7
D. -7
Cho hàm số f(x) liên tục và có đạo hàm trên R và f ' ( x ) = e - f ( x ) ( 2 x + 3 ) ; f ( 0 ) = ln 2 . Tính ∫ 1 2 f ( x ) dx ?
A. 6ln2 + 2.
B. 6ln2 – 2.
C. 6ln2 – 3.
D. 6ln2 + 3.
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [0;1] và f(0)+f(1)=0. Biết ∫ 0 1 f 2 x d x = 1 2 , ∫ 0 1 f ' x c os π d x = π 2 . Tính ∫ 0 1 f x d x
A. 3 π 2
B. 2 π
C. π
D. 1 π
Cho hàm số y= f(x) có đạo hàm liên tục trên khoảng thỏa mãn x 2 f ' x + f x = 0 và f x ≠ 0 , ∀ x ∈ 0 ; + ∞ . Tính f(2) biết f(1) = e.
A. .
B. .
C. .
D. .
Cho các mệnh đề :
1) Hàm số y=f(x) có đạo hàm tại điểm x 0 thì nó liến tục tại x 0 .
2) Hàm số y=f(x) liên tục tại x 0 thì nó có đạo hàm tại điểm x 0 .
3) Hàm số y=f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì phương trình f(x) có ít nhất một nghiệm trên khoảng (a;b).
4) Hàm số y=f(x) xác định trên đoạn [a;b] thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
Số mệnh đề đúng là:
A. 2
B. 4
C. 3
D. 1
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] đồng thời thỏa mãn f ' ( 0 ) = 9 và 9 f ' ' ( x ) + [ f ' ( x ) - x ] 2 = 9 . Tính
A. T = 2 + 9 ln 2
B. T=9
C. T = 1 2 + 9 ln 2
D. T = 2 - 9 ln 2
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số y = f ( x ) có đạo hàm liên tục trên khoảng ( 0 ; + ∞ ) Khi đó ∫ f ' ( x ) x d x bằng
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [0;1] và thỏa mãn f(0)=0. Biết ∫ 0 1 f 2 x d x = 9 2 và ∫ 0 1 f ' x cos πx 2 d x = 3 π 4 . Tích phân bằng:
A. 1 π
B. 4 π
C. 6 π
D. 2 π