Tìm số phức liên hợp của số phức z thỏa mãn (1+i)z = 1 + 3i
A. z ¯ = -1 + 2i
B. z ¯ = 1 - 2i
C. z ¯ = -1 - 2i
D. z ¯ = 1 + 2i
Cho số phức z thỏa mãn 2 i − 1 z = z ¯ 1 + i + 3 i . Tìm phần ảo của số phức liên hợp của z.
A. 2
B. -2
C. 2i
D. -2i
Cho số phức z thỏa mãn 2 i - 1 z = z ¯ 1 + i + 3 i Tìm phần ảo của số phức liên hợp của z.
A. –2i
B. 2i
C. –2
D. 2
Cho số phức z thỏa mãn 2 i - 1 z = z ¯ 1 + 3 i + 3 i . Tìm phần ảo của số phức liên hợp của z.
A. -2i
B. 2i
C. -2
D. 2
Cho số phức z thỏa mãn ( - 1 + i ) z + 2 1 - 2 i = 2 + 3 i . Số phức liên hợp của z là z ¯ = a + b i với a,b thuộc R. Giá trị của a+b bằng
A.-1
B.-12
C.-6
D.1
Cho số phức Z thoả mãn (1+2i)z-5= 3i tìm số phức liên hợp z 2/ cho số phức z=a+bi(a, b thuộc R) thoả mãn 3z-5z ngan -6+10i=0 .tính a-b
\(\left(1+2i\right)z-5=3i\Leftrightarrow\left(1+2i\right)z=5+3i\)
\(\Rightarrow z=\dfrac{5+3i}{1+2i}=\dfrac{11}{5}-\dfrac{7}{5}i\)
\(\Rightarrow\overline{z}=\dfrac{11}{5}+\dfrac{7}{5}i\)
2.
Đề câu này là: \(3z-5\overline{z}-6+10i=0\) đúng không nhỉ?
Cho số phức z, biết ( 2 z - 1 ) ( 1 + i ) + ( z ¯ + 1 ) ( 1 - i ) = 2 - 2 i .
Tìm số phức liên hợp của số phức w=3z-3i
A. 1 3 - 1 3 i
B. 1 3 + 1 3 i
C. 1 - 4 i
D. 1 + 4 i
Chọn D.
Giả sử z=a+bi với a,b ∈ ℝ
Thay vào biểu thức ta được:
Tìm số phức z thỏa mãn (1 + i)z + (2 - 3i)(1 + 2i) = 7 + 3i.
A.
B.
C.
D.
Chọn B.
Ta có: (2 - 3i).(1 + 2i) = 2 + 4i - 3i - 6i2 = 8 + i
Từ giả thiết : (1 + i)z + (2 - 3i)(1 + 2i) = 7 + 3i nên
(1 + i)z + (8 + i) = 7 + 3i hay (1 + i)z = -1 + 2i
Cho số phức z thỏa mãn ( 2 + 3 i ) z - ( 1 + 2 i ) z ¯ = 7 - i . Tìm mô đun của z.
A. z =1
B. z =2
C. z = 3
D. z = 5
Đáp án D
Phương pháp:
Đặt z=a+bi, giải phương trình để tìm a, b
Cách giải:
Cho số phức z thỏa mãn (2+3i)z - (1+2i) z = 7 - i. Tìm mô đun của z
A. |z| = 1
B. |z| = 2
C. |z| = 3
D. |z| = 5